Engineering and geological parameters for heap leaching of gold from low-grade sandy clay ores: a feasibility study

The most economically feasible technology for extracting valuable components from low-grade ores is the heap leaching technology. The main principle of heap leaching technology is the migration of the leaching solution through a stationary volume of ore, so that along the way of the solution movement the oxidation of metals occurs due to their interaction with chemical reagents, as a result of which metals are transformed into easily soluble compounds from which a useful component is easily extracted. In the process of heap leaching, depending on the operating mode, engineering and geological parameters such as physical and mechanical properties of the constituent soils, water saturation level, compaction under the action of overlying rocks change, which directly affects the stability of the soil mass and the development of deformation processes. In order to obtain a more reliable forecast of the geomechanical and engineering-geological situation at the heap leaching site, the numerical simulation of the stress-strain state of rocks was carried out in accordance with the calculation scheme which takes into account changes in the physical and mechanical properties of rocks resulting from compaction, saturation of the massif with cyanide solutions and precipitation. As a result, a methodology for substantiating optimal geotechnical parameters and filtration regime of heap leach piles operation and management of their stability, taking into account the specifics of functioning of complex engineering and geological structures of man-made origin, subject to the leaching process, was developed.

Keywords: heap leaching, pelletized ore, stack stability, permeability coefficient, numerical modeling, stress-strain analysis, geomechanical processes, geotechnical forecasting, stability assessment.
For citation:

Marinin M. A., Karasev M. A., Pospekhov G. B., Pomortseva A. A., Sushkova V. I. Engineering and geological parameters for heap leaching of gold from low-grade sandy clay ores: a feasibility study. MIAB. Mining Inf. Anal. Bull. 2023;(9):22-37. DOI: 10.25018/0236_1493_2023_9_0_22.

Issue number: 9
Year: 2023
Page number: 22-37
ISBN: 0236-1493
UDK: 622.234.42:553.41
DOI: 10.25018/0236_1493_2023_9_0_22
Article receipt date: 04.05.2023
Date of review receipt: 23.05.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

M.A. Marinin1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-5575-9343,
M.A. Karasev1, Dr. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-8389-0807,
G.B. Pospekhov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-9090-5150,
A.A. Pomortseva1, Graduate Student, e-mail:, ORCID ID: 0000-0002-7911-7011,
V.I. Sushkova1, Leading Specialist, e-mail:, ORCID ID: 0000-0003-4247-6499,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

V.I. Sushkova, e-mail:


1. Trubetskoy K. N., Kaplunov D. R., Rylnikova M. V. The principles of parametes justification of sustainable and ecologically balanced exploration of solid mineral resources. MIAB. Mining Inf. Anal. Bull. 2014, no. 2, pp. 3—10. [In Russ].

2. Chanturiya V. A., Vaysberg L. A., Kozlov A. P. Promising trends in investigations aimed at all-round utilization of mineral raw materials. Obogashchenie Rud. 2014, no. 2, pp. 3—9. [In Russ]. DOI: 10.17580/or.2014.02.01

3. Shumilova L. V., Khatkova A. N., Cherkasov V. G. Alternative preparation of mining waste for metal leaching. MIAB. Mining Inf. Anal. Bull. 2021, no. 3-2, pp. 173—181. [In Russ]. DOI: 10.25018/0236_1493_2021_32_0_173.

4. Ivanik S. A., Ilyukhin D. A. Flotation extraction of elemental sulfur from gold-bearing cakes. Journal of Mining Institute. 2020, vol. 242, pp. 202—208. [In Russ]. DOI: 10.31897/PMI.2020.2.202.

5. Alexandrova T., Nikolaeva N., Afanasova A., Romashev A., Aburova V., Prokhorova E. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023, vol. 13, no. 1, pp. 84—112. DOI: 10.3390/min13010084.

6. Sokolov I. V., Antipin Yu. G., Rozhkov A. A., Solomein Yu. M. Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste. Journal of Mining Institute. 2023, vol. 260, pp. 289—296. [In Russ]. DOI: 10.31897/ PMI.2023.21.

7. Larichkin F. D., Voitekhovsky Yu. L., Vorobyov A. G., Goncharova L. I. Peculiarities of substantiating the parameters of the conditions for cost-effective extraction of valuable rare-earth components of multicomponent mineral raw materials. Gornyi Zhurnal. 2016, no. 1, pp. 49—53. [In Russ]. DOI: 10.17580/gzh.2016.01.10.

8. Podzemnoe i kuchnoe vyshchelachivanie urana, zolota i drugikh metallov: v 2 t. Pod red. M. I. Fazlullina, t. 1: Uran [Underground and heap leaching of uranium, gold and other metals: in 2 vol., Fazlullin M. I. (Ed.)], Moscow, ID «Ruda i Metally», 2005, 407 p.

9. Sanakulov K. S. Effektivnoe ispol'zovanie tekhnogennykh otkhodov pri kuchnom vyshchelachivanii zolota [Effective use of anthropogenic waste in the heap leaching of gold], Navoi, Tipografiya NGMK, 2021, 379 p.

10. Golik V. I., Razorenov Yu. I., Brigida V. S., Burdzieva O. G. Mechanochemical technology of metal mining from enriching tails. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, vol. 331, no. 6, pp. 175—183. [In Russ]. DOI: 10.18799/24131830/2020/6/2687.

11. McBride D., Gebhardt J., Croft N., Cross M. Heap leaching: Modeling and forecasting using CFD technology. Minerals. 2018, vol. 8, no. 1, article 9. DOI: 10.3390/MIN8010009.

12. Kutepov Yu. I., Kutepova N. A. Methodology of engineering-geological study of hydrogeomechanical processes in technogenic-disturbed massifs during mining MPI. MIAB. Mining Inf. Anal. Bull. 2014, no. 8, pp. 123—131. [In Russ].

13. Petersen J. Heap leaching as a key technology for recovery of values from low-grade ores. A brief overview. Hydrometallurgy. 2016, vol. 165, pp. 206—212. DOI: 10.1016/j.hydromet. 2015.09.001.

14. Glazunov V. V., Burlutsky S. B., Shuvalova R. A., Zhdanov S. V. Increasing the reliability of 3D modeling of a landslide slope based on accounting for engineering geophysics data. Journal of Mining Institute. 2022, vol. 257, pp. 771—782. [In Russ]. DOI: 10.31897/PMI.2022.86.

15. Lushnikov Ya. V., Bagazeev V. K. Definition of physical and mechanical properties of ore pellets when forming a stack of heap leaching. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2013, no. 8, pp. 124—127. [In Russ].

16. Tataurov S. B. Experimental and theoretical studies and justification of geotechnology of stock pile formation from pelletized gold-bearing ores in order to enhance its filtration properties. Journal of Mining Institute, vol. 189, pp. 168—174. [In Russ].

17. Toro N., Ghorbani Y., Turan M. D., Robles P., Gálvez E. Gangues and clays minerals as rate-limiting factors in copper heap leaching: a review. Metals. 2021, vol. 11, pp. 1539—1554. DOI: 10.3390/met11101539.

18. Dementev V. E., Tatarinov A. P., Gudkov S. S. Main aspects of heap leaching technology for gold-bearing raw materials. Gornyi Zhurnal. 2001, no. 5, pp. 53—55. [In Russ].

19. Robertson S. W., van Staden P. J., Cherkaev A., Petersen J. Properties governing the flow of solution through crushed ore for heap leaching. Hydrometallurgy. 2022, vol. 208, pp. 1—17. DOI: 10.10165/j.hydromet.2021.105811.

20. Argimbaev K. R. Investigations of the deposit geological structure impact on the technogenic accident risk at the mining plant. Journal of Engineering and Applied Sciences. 2018, vol. 13, no. 7, pp. 1713—1717.

21. Reyes A., Garma P., Parra D. 3D slope stability analysis of heap leach pads using the limit equilibrium method. Peru, 2014, pp. 257—271.

22. Wei L., Zhang Y., Zhao Z., Zhong X., Liu S. Analysis of mining waste dump site stability based on multiple remote sensing technologies. Remote Sensing. 2018, vol. 10, no. 12, pp. 2025—2045. DOI: 10.3390/rs10122025.

23. Ponomarenko T., Nevskaya M., Marinina O. An assessment of the applicability of sustainability measurement tools to resource-based economies of the commonwealth of independent states. Sustainability. 2020, vol. 12, no. 14, pp. 5582—5589. DOI:10.3390/su12145582.

24. Smith M., Parra D., Asociados A. Leach pad cost benchmarking. Proceedings of Heap Leach Solutions. Peru, 2014, 9 p.

25. Pashkevich M. A., Alekseenko A. V., Nureev R. R. Environmental damage from the storage of sulfide ore tailings. Journal of Mining Institute. 2023, vol. 260, pp. 155—167. [In Russ]. DOI: 10.31897/PMI.2023.32.

26. Petrova T. A., Rudzisha E, Alekseenko A. V., Bech J., Pashkevich M. A. Rehabilitation of disturbed lands with industrial wastewater sludge. Minerals. 2022, vol. 12, no. 3, pp. 1—19. DOI: 10.3390/MIN12030376.

27. Gospodarikov A. P., Efimov D. A. Technical and technological aspects of the use of Reuleaux triangular profile rolls in crushing units in the ore processing plant. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 117—126. [In Russ]. DOI: 10.25018/0236-1493-2022-1020-117.

28. Mostaghimi P., Tollit B. S., Neethling S. J., Gorman G. J., Pain C. C. A control volume finite element method for adaptive mesh simulation of flow in heap leaching. Journal of Engineering Mathematics. 2014, vol. 87, no. 1, pp. 111—121. DOI: 10.1007/S10665-013-9672-3.

29. Miao X., Narsilio G. A., Wu A., Yang B. 3D dual pore-system leaching model. Part 1: Study on fluid flow. Hydrometallurgy. 2017, vol. 167, pp. 173—182. DOI: 10.1016/j.hydromet.2016.11.015.

30. Brinkgreve R. B. J. PLAXIS 3D 2017. Material Models Manual, Netherlands, 2018. 212 p.

31. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

32. Smith I. M., Griffith D. V. Programming the finite element method. John Wiley & Sons, Chisester, U.K, 2nd edition, 1982. 351 p.

33. Schanz T., Vermeer P. A., Bonnier P. G. The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics. 1999, pp. 281—290.

34. Demenkov P. A., Trushko O. V., Komolov V. V. The forecast of earth surface subsidence at the excavator of the pit near the building. News of the Tula state university. Sciences of Earth. 2019, no. 2, pp. 300—309. [In Russ].

35. Schaap M. G., Van Genuchten M. Th. A modified mualem-van genuchten formulation for improved description of the hydraulic conductivity near saturation. Vadose Zone Journal. 2006, vol. 5, pp. 27—34. DOI: 10.2136/vzj2005.0005.

36. Mostaghimi P., Tollit B. S., Neethling S. J., Gorman G. J., Pain C. A control volume finite element method for adaptive mesh simulation of flow in heap leaching. Journal of Engineering Mathematics. 2014, vol. 87, pp. 111—121. DOI: 10.1007/S10665-013-9672-3

37. Thenepalli T., Chilakala R., Habte L., Tuan L., Kim C. S. A Brief note on the heap leaching technologies for the recovery of valuable metals. Sustainability. 2019, vol. 11, no. 12. article 3347. DOI: 10.390/SU1112334730.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.