The use of electrokinetic phenomena in the autonomous generation of electrical energy in geological exploration

Abstract The impossibility of regular use of storage devices during geological exploration (battery, power supply) makes the use of renewable energy sources relevant. The article presents a theoretical study of electrokinetic phenomena, which consists in the fact that in dispersed materials of dielectric nature, a double electric layer appears at the interface of a solid dispersed dielectric — water, the cause of which is polyunsaturated bonds on the surface of a fragmented dielectric, attracting water molecules from the surrounding space. The thickness of the double electric layer is no more than 3-5 diameters of the water molecule. When an external electric field is applied to this system, the double electric layer moves, dragging the surrounding water with it — water mass transfer occurs in a stationary porous «diaphragm». This phenomenon of creating hydraulic pressure under the action of an electric field is called electroosmosis. The reverse phenomenon of electroosmosis is called osmo-EMF. To assess the potential possibility of extracting electrical energy from aquifers, it is necessary to determine not only the colloidal characteristics of the dispersed phase of the membrane, but also the filtration characteristics of this soil. To select an electricity-producing reservoir, it is obviously necessary to set the electrical power of the source and the necessary EMF. A scheme of an electroosmotic generator is proposed, with the help of which it is possible to obtain a potential difference of electric energy EMF for powering various instruments of a geological expedition in field conditions. The results obtained in the course of the study can be applied in practical situations, based on the data given in the tables, as well as on the calculations performed.

Keywords: electrokinetics, flow potential, osmotic emf, wet dispersed materials, surface phenomena, double electric layer, machine-less hydroelectric power plant.
For citation:

Porsev E. G., Borzenkov A. N., Abramov E. Yu., Chernov A.A., Rozhkova M. V. The use of electrokinetic phenomena in the autonomous generation of electrical energy in geological exploration. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):141—155. [In Russ]. DOI: 10.25018/0236_1 493_2023_101_0_141.

Issue number: 10
Year: 2023
Page number: 141-155
ISBN: 0236-1493
UDK: 378.0015
DOI: 10.25018/0236_1493_2023_101_0_141
Article receipt date: 18.04.2023
Date of review receipt: 24.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Porsev E. G.1, assistant, e-mail:, аutorId: 413591;
Borzenkov A. N.1, junior research assistant,
Abramov E. Y.1, assistant, e-mail:, ORCID ID: 0000-0002-50133288;
Chernov А. А.1, junior research assistant;
Rozhkova M. V.1, senior lecturer, e-mail:, ORCID ID: 0000-00015039-2039;
1 Novosibirsk State Technical University, 630073, Novosibirsk, Russia.


For contacts:

Porsev E. G., e-mail:


1. Abramov B. I., Ivanov A. G., Shilenkov V. A., Kuzmin I. K., Shevyrev Y. V. Electric drive of modern mine hoisting machines. MIAB. Mining Inf. Anal. Bull. 2022, no. 5–2, pp. 145–162. [In Russ]. DOI: 10.25018/0236_1493_2022_52_0_145.

2. Ryzhakov V. V., Kholudeneva A. O., Ryzhakov M. V. Research correlations electro and related processes. Intersectoral scientific and technical journal “Defence complex scientific and technological progress of Russia”. 2015, no. 3, pp. 41–43. [In Russ].

3. Serov A. D., Aksenova I. V. The use of electroosmosis for protection of structures of historic builtdings against humidification in the course of reconstruction and restoration. Industrial and Civil Engineering. 2014, no. 6, pp. 54–57 [In Russ].

4. Pis’menskaya N. D., Nikonenko V. V., Mel’nik N. A., Pourcelli G., Larchet G. Effect of the ion-exchange-membrane/solution interfacial characteristics on the mass transfer at severe current regimes. Russian Journal of Electrochemistry. 2012, vol. 6(48), pp. 610–628. [In Russ].

5. Sologaev V. I. About of the application of electroosmosis in protecting against underflooding of land. Bulletin of the Omsk SAU. 2017, vol. 3(27), pp. 122–129. [In Russ].

6. Kholudeneva A. O. The study of the characteristics of electroosmotic porous waste dehydration subject to the influence of the physical model of osmosis and voltage dynamics. Journal of Advanced Research in Dynamical and Control Systems. 2018, vol. 10 (10), pp. 2142–2146.

7. Ryzhakov V. V., Holudeneva A. O. Drying processes of wet materials: Environmental problem and choice of the theoretical, circuitry and experimental directions of their solutions. International Journal of Applied Engineering Research. 2017, vol. 12 (14), pp. 4638–4643.

8. Pai M. Y., Siddhartha S. Effect of Building Orientation and Window Glazing on the Energy Consumption of HVAC System of an Office Building for Different Climate Zones. International Journal of Engineering Research & Technology (IJERT). 2015, vol. 4 (9), pp. 838–843. DOI: 10.17577/IJERTV4IS090754.

9. Lomize G. M., Netushil A. V. Electroosmotic water reduction. Moscow; Leningrad, Gosenergoizdat. 1958, 176 p. [In Russ].

10. Chan F. S., Tan C. K., Ratnayake P., Junaidi M. U. M., Liang Y. Y. Reduced-order modelling of concentration polarization with varying permeation: Analysis of electro-osmosis in membranes. Desalination. 2020, vol. 495, p. 13. DOI: 10.1016/j.desal.2020.114677.

11. Godinez-Brizuela O. E., Niasar V. J. Simultaneous pressure and electro-osmosis driven flow in charged porous media: pore-scale effects on mixing and dispersion. Journal of Colloid and Interface Science. 2019, vol. 561, pp. 162–172. DOI: 10.1016/j.jcis.2019.11.084.

12. Ratnayake P., Bao J. Actuation of spatially-varying boundary conditions for reduction of concentration polarisation in reverse osmosis channels. Computers & Chemical Engineering. 2017, vol. 98, pp. 31–49. DOI: 10.1016/j.compchemeng.2016.11.045.

13. Hideyuki S., Koshi U. Experimental demonstration of closing and opening motions of an elastic valve using induced charge electroosmosis in a flow. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021, vol. 628, p. 7. colsurfa.2021.127334.

14. Ling J., Han B., Xie Y., Dong Q., Sun Y., Huang B. Laboratory and field study of electroosmosis dewatering for pavement subgrade soil. J. Cold Reg. Eng. 2017, vol. 31.−5495.0000136.

15. Zhao X.-D., Liu Y., Gong W.-H. Analytical solution for one-dimensional electroosmotic consolidation of double–layered system. Computers and Geotechnics. 2020, vol. 122, p. 10. DOI: 10.1016/j.compgeo.2020.103496.

16. Sorokova, S. N.; Efremenkov, E. A.; Valuev, D. V.; Qi, M. Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport. Mathematics 2023, 11, 3317. DOI: 10.3390/math11153317.

17. Zhang Y., Lian G., Dong C., Cai M., Song Z., Shi Y., Wei Z. Optimizing and understanding the pressurized vertical electro-osmotic dewatering of activated sludge. Process Safety and Environmental Protection. 2020, vol. 140, pp. 392–402. DOI: 10.1016/j. psep.2020.05.016.

18. Zhuang Y. Large scale soft ground consolidation using electrokinetic geosynthetics. Geotextiles and Geomembranes. 2021, vol. 49(3), pp. 757–770. DOI: 10.1016/j. geotexmem.2020.12.006.

19. Cao B., Zhang Y., Shi Y., Ren R., Wu H., Zhang W., Wang D., Zhang T., Xiong J. Extracellular organic matter (EOM) distribution characteristic in algae electro-dewatering process. Journal of Environmental Management. 2020, vol. 265, p. 9. DOI: 10.1016/j. jenvman.2020.110541.

20. Stepanenko V. P. On the issue of increasing resource saving at autonomous power plants in the Republic of Sakha (Yakutia). MIAB. Mining Inf. Anal. Bull. 2018, no. 6, pp. 62–68. [In Russ]. DOI: 10.25018/0236-1493-2018-6-0−62−68.

21. Martyushev N. V., Malozyomov B. V., Sorokova S. N., Efremenkov E. A., Qi M. Mathematical Modeling of the State of the Battery of Cargo Electric Vehicles. Mathematics. 2023, vol. 11, p. 536.

22. Khalikov I. H., Kukartsev V. A., Kukartsev V. V., Tynchenko V. S., Tynchenko Y. A., Qi M. Review of Methods for Improving the Energy Efficiency of Electrified Ground Transport by Optimizing Battery Consumption. Energies. 2023, vol. 16, p. 729. DOI: 10.3390/en16020729.

23. Shchurov N. I., Dedov S. I., Malozyomov B. V., Shtang A. A., Klyuev R. V., Andriashin S. N. Degradation of Lithium-Ion Batteries in an Electric Transport Complex. Energies. 2021, vol. 14, p. 8072.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.