The use of criteria of geodynamic prediction based on seismic monitoring data in coal mining

In this article, the seismic monitoring system GITS in operation in the Osinniki Mine, Raspadskaya PJSC, and the seismic information processing algorithms are described in brief. The energy characteristic of seismic activity in rock mass is an index F including seismic deformation and total seismic activity of rock mass during test time interval. The mathematical modeling of the stress–strain curves is depicted by the contour maps of the vertical stress concentration factor, and the vertical and horizontal displacements in Elbansky-5 coal seam and its roof. The comparison of the mathematical modeling and seismic monitoring results revealed a correlation between the vertical stress concentration factor in the seam roof and the integrated seismic parameter. In this case, it is the use of the integral parameters which improves the analysis information content by 1.5–2.5 times. In the capacity of the second geomechanical parameter as a characteristic of hazard of a dynamic event, it is proposed to use the distance from an exposed rock surface to a maximum point of an informative parameter. Based on the integrated experimental and analytical research results, the nomograms are developed for the geodynamic prediction using geophysical and geomechanical parameters. In terms of the Osinniki Mine, the hazard–nonhazard boundary is described by an exponential function, and the ranges of values involved are as follows: integrated seismic parameter—30–680 units; integral index of integrated seismic parameter—25–138 units; exposed surface–maximum point distance—5.0–37.0 m.

Keywords: seismic monitoring system, geodynamic events, rock pressure, stress concentration factor, stress–strain behavior of rock mass, mathematical modeling.
For citation:

Razumov E. E., Prostov S. M., Petrova O. A. The use of criteria of geodynamic prediction based on seismic monitoring data in coal mining. MIAB. Mining Inf. Anal. Bull. 2024;(11):139-151. [In Russ]. DOI: 10.25018/0236_1493_2024_11_0_139.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 139-151
ISBN: 0236-1493
UDK: 622.831:550.34.03
DOI: 10.25018/0236_1493_2024_11_0_139
Article receipt date: 11.10.2023
Date of review receipt: 15.03.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

E.E. Razumov1, Graduate Student; Senior Researcher, e-mail: razumov@vnimi.ru, JSC Scientific Research Institute of Mining Geomechanics and Surveying — VNIMI Interdisciplinary Research Center, Saint-Petersburg, Russia,
S.M. Prostov1, Dr. Sci. (Eng.), Professor, e-mail: psm.kem@mail.ru, 
O.A. Petrova, Cand. Sci. (Eng.), Assistant Professor, Siberian State Industrial University, 654007, Novokuznetsk, Russia, e-mail: ol_petrova@mail.ru,
1 T. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.

 

For contacts:

E.E. Razumov, e-mail: razumov@vnimi.ru.

Bibliography:

1. Sidlyar A. V., Grunin A. P., Konstantinov A. V. The results of the application of the geoacoustic mountain pressure monitoring system «Prognoz-ADS» at high-impact deposits of the Far East and other regions of Russia. Molodye uchenye — Khabarovskomu krayu: Materialy XXV kraevogo konkursa molodykh uchenykh [Young scientists — Khabarovsk Territory: Materials of the XXV regional competition of young scientists], Khabarovsk, TOGU, 2023, pp. 59—61. [In Russ].

2. Konstantinov A. V., Gladyr A. V. Designing a universal measuring and analytical platform for studying the state of a rock mass. Minerals and Mining Engineering. 2019, no. 4, pp. 24—32. [In Russ]. DOI: 10.21440/0536-1028-2019-4-24-32.

3. Tereshkin A. A., Tsoi D. I., Rasskazov M. I., Konstantinov A. V. Investigation of the parameters of the remoteness of acoustic emission signals using a local control device «Prognoz-L». Global Science and Innovations 2021: Central Asia. 2021, no. 1(12), pp. 24—28. [In Russ].

4. Shaporeva G., Bizyaev A., Yakovitskaya G. Analysis of electromagnetic emission signals accompanying the process of rock destruction. Progress through Innovations: Proceedings VII International Academic and Research Conference of Graduate and Postgraduate Students. Novosibirsk, 2018, pp. 159—160.

5. Vostretsov A. G., Bizyaev A. A., Yakovitskaya G. E. Experimental studies on synchronous registration of mechanical and electromagnetic parameters of EMR signals during loading of rock samples. Proceedings of the Russian Higher School Academy of Sciences. 2018, no. 3(40), pp. 38—46. [In Russ]. DOI: 10.17212/1727-2769-2018-3-38-46.

6. Vostretsov A. G., Kulakov G. I., Bizyaev A. A., Yakovitskaya G. E. Measuring system for synchronous registration of EMR signals and mechanical parameters of deformation of rock samples in laboratory experiments. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2017, no. 6, pp. 204—210. [In Russ]. DOI: 10.15372/FTPRPI20170622.

7. Tian X., Song D., He X., Khan M., Li Z., Qiu L., Liu X. On the characterization and correlation of the rock failure-induced electromagnetic radiation and micro-vibration. Engineering Geology. 2022, vol. 311, no. 3, article 106879. DOI: 10.1016/j.enggeo.2022.106879.

8. Klyuchkin V., Novikov V., Okunev V., Zeigarnik V. Acoustic and electromagnetic emissions of rocks: insight from laboratory tests at press and shear machines. Environmental Earth Sciences. 2022, vol. 81, no. 64, pp. 1—13. DOI: 10.1007/s12665-022-10189-z.

9. Lebedev M. O., Romanevich K. V., Shlyaev S. A. Method of registration of natural electromagnetic radiation of rocks as part of a system of integrated geotechnical monitoring of tunnels. Metro and tunnels. 2023, no. 1, pp. 35—40. [In Russ].

10. Frid V., Wang E. Y., Mulev S. N., D. Li X. The fracture induced electromagnetic radiation: approach and protocol for the stress state assessmentfor mining. Geotechnical and Geological Engineering. 2021, vol. 39, pp. 3285—3291. DOI: 10.1007/s10706-021-01682-6.

11. Romanevich K. V., Lebedev M. O., Andrianov S. V. Results of long-term geotechnical monitoring of mountain tunnels using the electromagnetic emission method in the period 2009–2022 GEOSOCHI-2022. Tematicheskaya sessiya «Sovremennoe sostoyanie i perspektivy razvitiya inzhenernoy geofiziki»: Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [GEOSOCHI-2022. Thematic session: «The current state and prospects for the development of engineering geophysics»: Proceedings of the International scientific and practical conference], Tver, PoliPRESS, 2022, pp. 56—61. [In Russ].

12. Lebedev M. O., Romanevich K. V., Mulev S. N., Starnikov V. N. Prerequisites for the field forecast of hazardous geomechanical phenomena during the construction of subway structures in St. Petersburg. Russian Mining Industry Journal. 2023, vol. S1, pp. 150—158. [In Russ]. DOI: 10.30686/16099192-2023-S1-150-158.

13. Egorov A. P., Ryzhov V. A. On the issue of systematization of geophysical studies of the geomechanical state of the rock mass and the Earth's surface for operational safety control of mining operations at coal mines. Ugol'. 2019, no. 10, pp. 22—28. [In Russ].

14. Kopylov K. N., Smirnov O. V., Kulik A. I., Potapov P. V. Tests of an automated acoustic control system for the state of a rock mass. Ugol'. 2015, no. 7, pp. 44—47. [In Russ].

15. Meifeng C. Prediction and prevention of rockburst in metal mines. A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering. 2016, vol. 8, no. 2, pр. 204—211. DOI: 10.1016/j.jrmge.2015.11.002.

16. Manchao H., Fuqiang R., Dongqiao L. Rockburst mechanism research and its control. International Journal of Mining Science and Technology. 2018, vol. 28, no. 5, pр. 829—837. DOI: 10.1016/j. ijmst.2018.09.002.

17. Azhari A., Ozbay U. Evaluating the effect of earthquakes on open pit mine slopes. 50th U.S. Rock Mechanics. Geomechanics Symposium. 2016, Houston, Texas. 2016, pp. 315—324.

18. Williams-Stroud S. C. Earth stress and seismic hazard from the size-frequency distribution of seismic events. 51st U.S. Rock Mechanics. Geomechanics Symposium. 2017, California, San-Francisco. 2017, pp. 544—550.

19. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Basic principles of building seismic monitoring systems during mining of impact-prone coal seams. Gornyi Zhurnal. 2021, no. 1, pp. 8—12. [In Russ]. DOI: 10.17580/gzh.2021.01.02.

20. Razumov E. E., Prostov S. M., Petrova O. A. Experimental and analytical investigation of geomechanical dynamics of coal mining near tectonic faults. MIAB. Mining Inf. Anal. Bull. 2024, no. 3, pp. 102—118. [In Russ]. DOI: 10.25018/0236_1493_2024_3_0_102.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.