The use of industrial waste in removal of heavy metals from wastewater

Traditional methods of wastewater treatment from heavy metals, such as chemical precipitation, flotation, ion exchange, filtration and sorption, are considered. Advantages, disadvantages and limitations are analyzed for each method. The need for additional research is emphasized to improve existing methods and develop new technologies that ensure low processing costs, high efficiency and minimal environmental impact. Adsorption is presented as an effective method due to its simplicity, versatility, high pollution removal rate and the possibility of repeated use of sorbents. However, the importance of using inexpensive materials with high absorption capacity and developing effective regeneration methods to extend the service life of adsorbents and reduce costs is emphasized. Chemical deposition, despite the economic benefit due to independence from additional factors such as electrodes or membranes, is characterized by the formation of a large amount of sediment requiring additional treatment. Special attention is paid to the possibilities of using waste in these processes. Research is presented on the use of materials for wastewater treatment from metals, which mainly include industrial waste such as fly ash, red sludge, steelmaking slag and others. The environmental and economic advantages of this approach are noted, but the need for additional research to optimize their use in real wastewater with a multi-element composition is emphasized.

Keywords: heavy metals, mining, wastewater, purification, reagents, sorption, industrial waste, flotation.
For citation:

Sobenin A. V., Antoninova N. Yu., Gorbunov A. V., Yakupov D. R. The use of industrial waste in removal of heavy metals from wastewater. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):47-66. [In Russ]. DOI: 10.25018/0236_1493_2024_121_0_47.

Acknowledgements:

The article was prepared within the framework of State Assignment No. 075-00412-22 PR. Topic 2 (2022-2024). Development of geoinformation technologies for assessing the security of mining areas and forecasting the development of negative processes in subsoil use (FUWE-2022-0002), reg. No. 1021062010532-7-1.5.1.

Issue number: 12
Year: 2024
Page number: 47-66
ISBN: 0236-1493
UDK: 628.3:669.018.674
DOI: 10.25018/0236_1493_2024_121_0_47
Article receipt date: 16.07.2024
Date of review receipt: 31.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

A.V. Sobenin1, Researcher, e-mail: arsob@yandex.ru, ORCID ID: 0000-0001-5513-5680,
N.Yu. Antoninova1,2, Cand. Sci. (Eng.), Head of Laboratory; Assistant Professor, e-mail: natal78@list.ru, ORCID ID: 0000-0002-8503-639X,
A.V. Gorbunov2, Cand. Sci. (Eng.), Assistant Professor, e-mail: alexgorbunov72@mail.ru, ORCID ID: 0009-0008-3266-3585,
D.R. Yakupov2, Cand. Sci. (Eng.), Assistant Professor, e-mail: damir.yakupov@m.ursmu.ru, ORCID ID: 0000-0003-2678-2090,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, 620075, Ekaterinburg, Russia
2 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

N.Yu. Antoninova, e-mail: natal78@list.ru.

Bibliography:

1. Gabaraeva Z. G., Makieva D. Ch. Effect of heavy metals on the human body. Education and Law. 2020, no. 11, pp. 302—304. [In Russ]. DOI: 10.24411/2076-1503-2020-11146.

2. Lin M. M., Farnosova E. N., Kagramanov G. G. Wastewater treatment from heavy metals by nanofiltration and ion exchange methods. Chemical industry today. 2017, no. 8, pp. 30—35. [In Russ].

3. Fadeev A. B., Kuzin E. N., Kruchinina N. E., Nosova T. I., Kostyleva E. V. Evaluation of the efficiency of methods for treating wastewater from galvanic production from ammonium tartrate complexes of copper (II). Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2020, no. 5(92), pp. 97—108. [In Russ]. DOI: 10.18698/1812-3368-2020-5-97-108.

4. Mukhamedov K. G., Nasirova N. K., Mukhamedov Zh. K., Abdurakhmanov O. Kh. Treatment of wastewater from galvanic industries by the reagent method. Universum: technical sciences. 2023, no. 7-3(112), pp. 51—56. [In Russ].

5. Ovchinnikov A. S., Bocharnikov V. S., Denisova M. A. Bocharnikov O. V., Kozinskaya O. V. Comparative economic assessment of various natural sorbents for wastewater treatment. Proceedings of Nizhnevolzskiy agrouniversity complex: science and higher vocational education. 2020, no. 2(58), pp. 65—72. [In Russ]. DOI: 10.32786/2071-9485-2020-02-06.

6. Stepanov S. V., Avdeenkov P. P., Ponomarenko O. S., Morozova K. M. Optimization and technical and economic assessment of process flow charts for wastewater treatment at an enterprise for deep processing of chicken eggs. Water Supply and Sanitary Technique. 2023, no. 5, pp. 37—47. [In Russ]. DOI: 10.35776/VST.2023.05.05.

7. Khorokhorina I. V., Lazarev S. I., Filimonova O. S., Bryankin K. V. Technological design and economic assessment of electromembrane methods for industrial wastewater treatment from heavy metals and APAV. Problems of Contemporary Science and Practice. Vernadsky University. 2023, no. 2(88), pp. 19—28. [In Russ]. DOI: 10.17277/voprosy.2023.02.pp.019-028.

8. Natareev S. V., Bakin M. A., Snegirev D. G. Development of a mathematical model for ion-exchange water purification from heavy metal salts in a capacitive apparatus. Fire and emergency safety. 2021, no. 1(20), pp. 27—31. [In Russ].

9. Medyanik N. L., Tusupbaev N. K., Varlamova I. A., Girevaya H. Ya., Kalugina N. L. Removal of heavy metals from solutions by ion flotation. Vestnik of Nosov Magnitogorsk State Technical University. 2016, vol. 14, no. 1, pp. 18—26. [In Russ]. DOI: 10.18503/1995-2732-2016-14-1-18-26.

10. Dagaeva E. V., Valinurova E. R. Sorption of copper (II) ions on natural and modified zeolites of the Honguruu deposit. Vestnik Bashkirskogo universiteta. 2019, vol. 24, no. 1, pp. 71—75. [In Russ].

11. Smirnova N. N., Nebukina I. A., Shiganova E. A. Comparative efficiency of using reagent methods in the processes of cleaning wastewater from galvanic industries from copper (II) ions. Water: chemistry and ecology. 2016, no. 8(98), pp. 32—37. [In Russ].

12. Ates N., Uzal N. Removal of heavy metals from aluminum anodic oxidation wastewaters by membrane filtration. Environmental Science and Pollution Research. 2018, vol. 25, no. 22, pp. 22259— 22272. DOI: 10.1007/s11356-018-2345-z.

13. Meiramkulova K. S., Aubakirova K. M., Userbaev M. T., Sayabaev K. M. Efficiency of wastewater treatment of the slaughterhouse of a poultry farm by the electrochemical method. Izvestiya Mezhdunarodnoy akademii agrarnogo obrazovaniya. 2018, no. 42-2, pp. 55—60. [In Russ].

14. Lavinia L., Cocheci L. Heavy metals removal from water and wastewater. Heavy Metals — Recent Advances. Intech Open, 2023. DOI: 10.5772/intechopen.110228.

15. Zhang Y, Duan X. Chemical precipitation of heavy metals from wastewater by using the synthetical magnesium hydroxy carbonate. Water Science and Technology. 2020, vol. 81, no. 6, pp. 1130— 1136. DOI: 10.2166/wst.2020.208.

16. Mohd Yatim S. R., Kasmuri S. N. H., Syahjidan H. N., Mokhtar N. S., Zainuddin N. A. Removing copper, chromium and nickel in industrial effluent using hydroxide precipitation versus sulphide precipitation. Health Scope. 2020, vol. 3, pp. 54—60.

17. Benalia M. C., Youcef L., Bouaziz M. G. Achour S. Menasra H. Removal of heavy metals from industrial wastewater by chemical precipitation: Mechanisms and sludge characterization. Arabian Journal for Science and Engineering. 2022, vol. 47, pp. 5587—5599. DOI: 10.1007/s13369-02105525-7.

18. Hoseinian F. S., Irannajad M., Safari M. Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation. Separation Science and Technology. 2016, vol. 52, no. 5, pp. 892—902. DOI: 10.1080/01496395.2016.1267216.

19. Salmani M. H., Davoodi M., Ehrampoush M. H. Ghaneian M. T., Fallahzadah M. H. Removal of cadmium (II) from simulated wastewater by ion flotation technique. Journal of Environmental Health Science and Engineering. 2013, vol. 10, no. 16. DOI: 10.1186/1735-2746-10-16.

20. Mulungulungu G. A., Mao T., Han K. Efficient removal of high-concentration copper ions from wastewater via 2D g-C3N4 photocatalytic membrane filtration. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021, vol. 623, article 126714. DOI: 10.1016/j.colsurfa.2021.126714.

21. Xiang H. Min X., Tang Chong-Jian, Sillanpää M. Recent advances in membrane filtration for heavy metal removal from wastewater. A mini review. Journal of Water Process Engineering. 2022, vol. 49, no. 6, article 103023. DOI: 10.1016/j.jwpe.2022.103023.

22. Chi-Wang L., Chia-Hsien C., Kwang-Ho C., Wei-Shuen Y. Polyelectrolyte enhanced ultrafiltration (PEUF) for the removal of Cd(II): Effects of organic ligands and solution pH. Chemosphere. 2008, vol. 72, no. 4, pp. 630—635. DOI: 10.1016/j.chemosphere.2008.02.036.

23. Jiao Y., Yang J., Zhang J., Li. J., Qin S., Wu X., Cui Z. Removal of heavy metal ions from acidic wastewater by constructing positively charged hollow fiber nanofiltration separating-layer based on Fe (III)/co deposition-quaternization. Journal of Water Process Engineering. 2023, vol. 56, article 104450. DOI: 10.1016/j.jwpe.2023.104450.

24. Harharah R. H., Abdalla G. M. T., Elkhaleefa A., Shigidi I., Harharah H. N. A study of copper (ii) ions removal by reverse osmosis under various operating conditions. Separations. 2022, vol. 9, no. 6, article 155. DOI: 10.3390/separations9060155.

25. Chen X., Ren P., Li T., Trembly J. P., Liu X. Zinc removal from model wastewater by electrocoagulation: Processing, kinetics and mechanism. Chemical Engineering Journal. 2018, vol. 349, pp. 358—367. DOI: 10.1016/j.cej.2018.05.099.

26. Brahmi K., Bouguerra W., Harbi S., Elaloui E., Loungou M., Hamrouni B. Treatment of heavy metal polluted industrial wastewater by a new water treatment process: ballasted electroflocculation. Journal of Hazardous Materials. 2018, vol. 15, no. 344, pp. 968—980. DOI: 10.1016/j.jhazmat.2017.11.051.

27. Wu C., Gao J., Liu Y., Jiao W., Su G., Zheng R., Zhong H. High-gravity intensified electrodeposition for efficient removal of Cd2+ from heavy metal wastewater. Separation and Purification Technology. 2022, vol. 289, article 120809.

28. Ahmed S., Aktar S., Zaman S. Jahan R. A., Bari M. L. Use of natural bio-sorbent in removing dye, heavy metal and antibiotic-resistant bacteria from industrial wastewater. Applied Water Science. 2020, vol. 10, article 107. DOI: 10.1007/s13201-020-01200-8.

29. Hamidi D., Honarasa F. Natural bitumen as an available low cost sorbent for remediation of heavy metal cations. Iranian Journal of Science and Technology Transactions a Science. 2020, vol. 44, pp. 687—694. DOI: 10.1007/s40995-020-00888-2.

30. Topka P., Soukup K., Hejtmánek V., Hlásenský I., Kaštánek F., Šolcová O. Remediation of brownfields contaminated by organic compounds and heavy metals: a bench-scale test of a sulfur/vermiculite sorbent for mercury vapor removal. Environmental Science and Pollution Research. 2020, vol. 27, pp. 42182—42188. DOI: 10.1007/s11356-020-10696-1.

31. Huang Y., Zeng X., Guo L., Lan J., Zhang L., Cao D. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Separation and Purification Technology. 2018, vol. 194, pp. 462—469. DOI: 10.1016/j.seppur.2017.11.068.

32. Alasadi A. M., Khaili F. I., Awwad A. M. Adsorption of Cu(II), Ni(II) and Zn(II) ions by nano kaolinite: Thermodynamics and kinetics studies. Chemistry International. 2019, vol. 5, no. 4, pp. 258—268. DOI: 10.5281/zenodo.2644985.

33. Ghasemi N., Ghasemi M., Moazeni S., Ghasemi P., Alharbi N. S., Gupta V. K., Agarwal S., Burakova I. V., Tkachev A. G. Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption. Journal of Industrial and Engineering Chemistry. 2018, vol. 62, no. 1, pp. 302—310. [In Russ]. DOI: 10.1016/j.jiec.2018.01.008.

34. Antoninova N. Yu., Sobenin A. V., Usmanov A. I., Gorbunov A. A. Justification of the possibility of using humic preparations production waste for wastewater treatment from metals (Cd2+, Zn2+, Mg2+, Cu2+) in order to develop effective measures for environmental rehabilitation. Journal of Mining Institute. 2024, vol. 267, pp. 421—432. EDN NYTBJH. [In Russ].

35. Antoninova N. Yu., Sobenin A. V., Usmanov A. I., Shepel K. V. Assessment of the possibility of using iron-magnesium production waste for wastewater treatment from heavy metals (Cd2+, Zn2+, Co2+, Cu2+). Journal of Mining Institute. 2023, vol. 260, pp. 257—265. [In Russ]. DOI: 10.31897/PMI. 2023.34.

36. Fomenko E. V., Anshits N. N., Soloviev L. A., Mikhailova O. A., Anshits A. G. Composition and structure of the cenosphere shell of fly ash from coal combustion in the Kuznetsk Basin. Chemistry of Solid Fuels. 2014, no. 2, pp. 55. [In Russ]. DOI: 10.7868/S0023117714020030.

37. Lin Sh., Lu Ya., Zheng L., Long L., Jiang X., Yan J. Mechanism study of Cu (II) adsorption from acidic wastewater by ultrasonic-modified municipal solid waste incineration fly ash. Chinese Journal of Chemical Engineering. 2023, vol. 67, pp. 157—165. DOI: 10.1016/j.cjche.2023.11.019.

38. Astuti W., Chafidz A., Wahyuni E. T., Prasetya A., Bendiyasa I. M., Abasaeed A. E. Methyl violet dye removal using coal fly ash (CFA) as a dual sites adsorbent. Journal of Environmental Chemical Engineering. 2019, vol. 7, no. 5, article 103262. DOI: 10.1016/j.jece.2019.103262.

39. Zhao H., Huang X., Zhang G., Li J., He Z., Ji P. Possibility of removing cadmium pollution from the environment using a newly synthesized material coal fly ash. Environmental Science and Pollution Research. 2020, vol. 27, pp. 4997—5008. DOI: 10.1007/s11356-019-07163-x.

40. Zheng R., Lü J., Song W., Liu M., Li H., Liu Y., Lü X., Ma Z. Metallurgical properties of CaO-SiO2-Al2O3-4.6wt%MgO-Fe2O3 slag system pertaining to spent automotive catalyst smelting. International Journal of Minerals, Metallurgy and Materials. 2023, vol. 30, pp. 886—896. DOI: 10.1007/s12613-022-2569-2.

41. Changalvaei M., Nilforoushan M. R., Arabmarkadeh A., Tayebi M. Removal of Ni and Zn heavy metal ions from industrial waste waters using modified slag of electric arc furnace. Materials Research Express. 2021, vol. 8, no. 5, article 055506. DOI: 10.1088/2053-1591/abf520.

42. Latorrata S., Balzarotti R., Adami MI., Marino B., Mostoni S., Scotti R., Bellotto M., Cristiani C. Wastewater treatment using alkali-activated-based sorbents produced from blast furnace slag. Applied Sciences. 2021, vol. 11, no. 7, article 2985. DOI: 10.3390/app11072985.

43. Czech B., Hojamberdiev M., Bogusz A. Impact of thermal treatment of calcium silicate-rich slag on the removal of cadmium from aqueous solution. Journal of Cleaner Production. 2018, vol. 200, no. 1, pp. 369—379. DOI: 10.1016/j.jclepro.2018.07.309.

44. Liu J., Xie Y., Li C., Fang G., Chen Q., Ao X. Novel red mud/poly-acrylic composites synthesized from red mud and its performance on cadmium removal from aqueous solution. Journal of Chemical Technology & Biotechnology. 2019, vol. 95, pp. 213—222. DOI: 10.1002/jctb.6223.

45. Pang Y., Zhao C., Li Y., Li Q., Bayongzhong X., Peng D. Cadmium adsorption performance and mechanism from aqueous solution using red mud modified with amorphous MnO2. Scientific Reports. 2022, vol. 12, article 4424. DOI: 10.1038/s41598-022-08451-2.

46. Dong W., Liang K., Qin Y., Ma H., Zhao X., Zhang L., Zhu S., Yu Y., Bian D., Yang J. Hydrothermal conversion of red mud into magnetic adsorbent for effective adsorption of Zn(II) in water. Applied Sciences. 2019, vol. 9, article 1519. DOI: 10.3390/app9081519.

47. The Water Code of the Russian Federation: Federal Law of the Russian Federation dated 06/03/2006 No. 74-FZ: ed. from 05/01/2022. Sobranie zakonodatel'stva Rossiyskoy Federatsii [Collection of legislation of the Russian Federation], 2006. No. 23. St. 2380—2381. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.