Use of advance hardware/software in multiple conveyor system automation

The main objectives to be met in automation of process flows in multiple conveyor systems are described. These objectives include acquisition of exact data from conveyor equipment, scales and meters and transfer of the data to automation control operator panel; controllability of a conveyor from the automation control operator panel; emergency stop of equipment; monitoring of drives, belt and takeup. The main constraints of conveyor automation are spatial branching of conveyors, diversity of process flows and types of conveyors and drives in terms of the number and type of motors, etc. An automation system should have the classical threelevel architecture. Engineering an automated control system for a process flow should use the advance hardware/software of domestic design and manufacture. One such hardware/software system can solve all objectives of monitoring and control over process flows ion all operating modes of a conveyor both in modernization and construction. A hardware/software system is based on the programmable logical controllers which maintain average and distributed automation. This article discusses some Russian-made controllers. The automated control of process flows can use controller REGUL500. The controller features high speed, reliability and real-time serviceability in distributed systems. The other advantages of controllers REGUL500 are high precision of measurements, hot swapping of all modules and resilience. Controller REGUL possesses various Russian certificates of conformity.

Keywords: belt conveyor, automated control system for process flows, conveyor transport automation, programmable logical conveyor.
For citation:

Dmitrieva V. V., Avkhadiev I. F., Sizin P. E.Use of advance hardware/software in multiple conveyor system automation. MIAB. Mining Inf. Anal. Bull. 2021;(2):150-163. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-150-163.

Issue number: 2
Year: 2021
Page number: 150-163
ISBN: 0236-1493
UDK: 62-551
DOI: 10.25018/0236-1493-2021-2-0-150-163
Article receipt date: 02.04.2020
Date of review receipt: 25.05.2020
Date of the editorial board′s decision on the article′s publishing: 10.01.2021
About authors:

V.V. Dmitrieva1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
I.F. Avkhadiev1, Student, e-mail:,
P.E. Sizin, Cand. Sci. (Phys. Mathem.), e-mail:, Institute of Basic Education, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
1 Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia.


For contacts:

V.V. Dmitrieva, e-mail:


1. Puchkov L. A., Fedunets N. I., Potresov D. K. Avtomatizirovannye sistemy upravleniya v gornodobyvayushchey promyshlennosti [Automated control systems in the mining industry], Moscow, Nedra, 1987, pp. 285.

2. Batitskiy V.A., Kuroedov V. I., Ryzhov A. A. Avtomatizatsiya proizvodstvennykh protsessov i ASU TP v gornoy promyshlennosti [Аutomation of production processes and automated control systems in the mining industry], Moscow, Nedra, 1991, pp. 303.

3. Dmitrieva V. V. Modern tasks of automation of conveyor belt transport. MIAB. Mining Inf. Anal. Bull. 2013. Special edition 1, pp. 281—286. [In Russ].

4. Król R., Kawalec W., Gladysiewicz L. An effective belt conveyor for underground ore transportation systems. IOP Conference Series. Earth and Environmental Science. 2017. Vol. 95. No 4. Article 042047. DOI: 10.1088/1755-1315/95/4/042047.

5. Zhiqiang Li, Fei Zeng, Cheng Yan, Junjie Wang, Ling Tang Design of belt conveyor speed control system of «Internet+». IOP Conference Series. Materials Science and Engineering. 2019. Vol. 563. Article 042088. DOI: 10.1088/1757-899X/563/4/042088.

6. Bebic M., Ristić L. Speed Controlled belt conveyors: drives and mechanical considerations. Advances in Electrical and Computer Engineering. 2018. Vol. 18. No 1. Pp. 51—60. DOI: 10.4316/AECE.2018.01007.

7. Zaytseva E. E., Bessarab V. I., Chervinskiy V. V. Algorithm of transport system management as a discrete-continuous object. Naukovі pratsі Dnets'kogo natsіonal'nogo tekhnіchnogo unіvestitetu. Serіya: Obchislyuval'na tekhnіka ta avtomatizatsіya. 2011, no 21(183), pp. 19—25.

8. Serezhkin V. S. Highly Reliable automated control systems based on PTC «Tekon» for large and small power plants. MIAB. Mining Inf. Anal. Bull. 2011, no 6, pp. 182—189. [In Russ].

9. Mendelevich V.A. Import substitution when creating an automated control system for power units of TPP of Russia on the basis of PTC «Sargon». Avtomatika i IT v energetike. 2015, no 7, pp. 10—15. [In Russ].

10. Mendelevich V.A. Multiplatform intelligent distributed typical systems «MIRTS» — a new generation of automation of technological processes. Avtomatika i IT v energetike. 2020, no 2, pp. 2—12. [In Russ].

11. Parai M. K., Das B., Das G. An overview of microcontroller unit: from proper selection to specific application. International Journal of Soft Computing and Engineering (IJSCE). 2013. Vol. 2. No 6. Pр. 228—231.

12. Güven Y., Kocooğlu S., Cosgum E., Gezici H. Understanding the concept of microcontroller based systems to choose the best hardware for applications. International Journal of Engineering And Science. 2017. Vol. 6. No 9. Pp. 38—44.

13. Gridling G., Weiss B. Introduction to microcontrollers. Vienna University of Technology Institute of Computer Engineering Embedded Computing Systems, Courses 182.064 & 182.074, 2007, February26, pp 160.

14. REGUL500-controllers of domestic production for building distributed control systems. Zhurnal «ISUP». 2017, no 2 (68). [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.