Acoustic and strength properties of physical models of frame and honeycomb mine structures

The article presents the experimental procedure and the results on acoustic and strength properties of physical models of frame and honeycomb underground structures designed at the Research Center for Applied Geomechanics and Convergent Technologies in Mining at NUST MISIS College of Mining. The implemented studies prove efficiency of physical models of frame and honeycomb mine structures in geomechanical studies in nature-like mining technologies. The physical modeling allows studies within a wide range of natural stress state and properties of equivalent materials. Elastic wave velocity measurements are performed on the physical models subjected to fracture. The standard variants of physical models of frame and honeycomb mine structures are developed. It is found that in the honeycomb mine structure models, the highest stability is demonstrated by systems represented by more number of circular voids of smaller diameter. The physical simulation approach has made it possible to calculate stable structural design parameters for the discussed systems, to reveal trouble spots, to identify potential avenues and stages of development of nature-like mining technologies, and, finally, to start a design project.

Keywords: frame and honeycomb underground structures, mining systems, physical model, limit strength, deformation, acoustic signal, equivalent geomaterial, comprehensive testing installation, 3D modeling, joint system, joint roughness, Q index.
For citation:

Leizer V. I., Vysotin N. G., Kosyreva M. A., Shermatova S. S. Acoustic and strength properties of physical models of frame and honeycomb mine structures. MIAB. Mining Inf. Anal. Bull. 2020;(12):54-64. [In Russ]. DOI: 10.25018/0236-1493-2020-12-0-54-64.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 19-17-00034.

Issue number: 12
Year: 2020
Page number: 54-64
ISBN: 0236-1493
UDK: 622.831; 622,2; 622.235
DOI: 10.25018/0236-1493-2020-12-0-54-64
Article receipt date: 03.09.2020
Date of review receipt: 04.11.2020
Date of the editorial board′s decision on the article′s publishing: 10.11.2020
About authors:

V.I. Leizer1, Graduate Student, e-mail: vlad.leizer@yandex.ru,
N.G. Vysotin1, Senior Lecturer, e-mail: kalgani@yandex.ru,
M.A. Kosyreva1, Graduate Student, e-mail: marinkosyreva@gmail.com,
S.S. Shermatova1, Graduate Student, e-mail: s_shermatova@inbox.ru,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

V.I. Leizer, e-mail: prof.eremenko@gmail.com.

Bibliography:

1. Trubetskoy K. N., Myaskov A. V., Galchenko Yu. P., Eremenko V.A. Creation and justification of convergent technologies for underground mining of thick solid mineral deposits. Gornyi Zhurnal. 2019, no 5, pp. 6–13. [In Russ]. DOI: 10.17580/gzh.2019.05.01.

2. Eremenko V.A., Galchenko Yu. P., Kosyreva M. A. Effect of geometry of conventional and nature-like underground mining systems on natural stress state. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2020, no 3, pp. 98—109. [In Russ].

3. Trubetskoy K. N., Galchenko Yu. P. Nature like mining technologies: Prospect of resolving global contradictions when developing mineral resources of the lithosphere. Herald of the Russian Academy of Sciences. 2017, Vol. 87, No. 4. P. 378 — 384.

4. Galchenko Yu. P., Eremenko V.A., Kosyreva M. A., Vysotin N. G. Features of secondary stress field formation under anthropogenic change in subsoil during underground mineral mining. Eurasian mining. 2020. No 1. Pp. 3—7. DOI: 10.17580/em.2020.01.02.

5. Sidorov D., Ponomarenko T. Reduction of the ore losses emerging within the deep mining of bauxite deposits at the mines of OJSC «Sevuralboksitruda». IOP Conference Series: Earth and Environmental Science. 2019. No 302. Pp. 1—8. DOI: 10.1088/1755-1315/302/1/012051.

6. Seryakov V. M., Rib S. V., Basov V. V., Fryanov V. N. Geomechanical justification of technological parameters for coal mine in the mutual influence zone of mined-out area and face in longwalls. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2018, no 6, pp. 21—29. [In Russ].

7. Hoek E., Brown E. T. Underground excavations in rock. London: Institute of Mining and Metallurgy, 1980.

8. Fairhurst C., Cook N. G. W. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighbourhood of a surface. Proceedings of 1st ISRM Congress of the International Society for Rock Mechanics and Rock Engineering, Lisbon, Sept. 25 — Oct. 1. 1966. Vol. 1. Pp. 687—692.

9. Jiang Q., Feng X., Song L., Gong Y., Zheg H., Cui J. Modeling rockspecimens through 3D printing: Tentative experiments and prospects. Acta Mechanica Sinica. 2015. Vol. 32. No 1. Pp. 524—535.

10. Kong L., Ostadhassan M., Li C., Tamimi N. Rock physics and geomechanics of 3D printed rocks. ARMA 51st U.S. Rock Mechanics. Geomechanics Symposium, San Francisco, California, USA. Conference Paper. 2017, pp. 1—8.

11. Gell E. M., Walley S. M., Braithwaite C. H. Review of the validity of the use of artificial specimens for characterizing the mechanical properties of rocks. Rock Mechanics and Rock Engineering. 2019. No 3. Pp. 1—13.

12. Galchenko Yu. P., Leizer V. I., Vysotin N. G., Yakusheva E. D. Procedure justification for laboratory research of secondary stress field in creation and application of convergent technology for underground mining of rock salt. MIAB. Mining Inf. Anal. Bull. 2019, no 11, pp. 35—47. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-35-47.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.