Analysis of emergency modes in deep subway station tunnel driving during estimation of displacements in undermined rock mass

The article discusses issues concerned with the estimation of harmful impact exerted by construction of the Teatralnaya Station of the Saint-Petersburg Subway on the building of the Mariinsky Theater’s Historic Stage under conditions of potential large deformations during driving of a tension station on the east side of the Teatralnaya Station tunnel. That problem was analyzed in the context of safety of the theater building under impact of mining operations at the final phase of underground construction, when the building was already considerably damaged and the tunneling was temporarily stopped at the largest stations of the subway for the analysis of deformations and for the ultimate decision-making on tunneling with a view to elimination of fatal consequences for the theater building. The main reason for the analysis of the emergency modes was given by the data of special field observations over rock mass, which showed very large displacements in rock mass above the arch of the middle station tunnel. The research included: the analysis of the construction technology for the large-section rooms on the east side of the test station with a view to revealing possible risks of large deformations; the multivariate numerical modeling of the stress–strain behavior of rock mass during tunneling; and the study of field data from observations of displacements in boreholes and on ground surface. Based on the research results, it is concluded on the very low probability of large deformations in rock mass and on ground surface in the current geological conditions of tunneling at the Teatralnaya Station, and the recommendations are offered for upgrading project exploration operations for the predictive estimation of movements in rock mass and for the deformation monitoring.

Keywords: displacements and deformations, stress–strain behavior, monitoring, observation boreholes, numerical modeling, Plaxis 3D, station tunnels, emergency driving modes, subway construction.
For citation:

Volokhov E. M., Kireeva V. I., Britvin I. A., Voloshina E. A. Analysis of emergency modes in deep subway station tunnel driving during estimation of displacements in undermined rock mass. MIAB. Mining Inf. Anal. Bull. 2025;(5):28-49. [In Russ]. DOI: 10. 25018/0236_1493_2025_5_0_28.

Acknowledgements:
Issue number: 5
Year: 2025
Page number: 28-49
ISBN: 0236-1493
UDK: 622.83
DOI: 10.25018/0236_1493_2025_5_0_28
Article receipt date: 08.07.2024
Date of review receipt: 29.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

E.M. Volokhov1, Cand. Sci. (Eng.), Associate Professor, e-mail: volohov@spmi.ru, ORCID ID: 0000-0003-4430-4172,
V.I. Kireeva, Cand. Sci. (Eng.), Independent Researcher, e-mail: chacter@mail.ru, ORCID ID: 0000-0002-9758-5871,
I.A. Britvin1, Graduate Student, e-mail: britvini25@yandex.ru, ORCID ID: 0000-0002-1561-0835,
E.A. Voloshina1, Cand. Sci. (Eng.), Associate Professor, e-mail: pravdina_ea@pers.spmi.ru, ORCID ID: 0009-0002-4510-7138,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint Petersburg, Russia.

 

For contacts:

I.A. Britvin, e-mail: britvini25@yandex.ru.

Bibliography:

1. Novozhenin S. U., Vystrchil M. G., Bogdanova K. A. Analysis of the mathematical modelling results of displacements and deformations induced by the construction of the escalator tunnel of «Mining Institute» station in Saint Petersburg. Journal of Physics: Conference Series. 2020, vol. 1661, no. 1, article 012105. DOI: 10.1088/1742-6596/1661/1/012105.

2. Vilner M. A., Streshnev A. A., Onuprienko V. S. Integrated stress–strain analysis of pillars in apatite–nepheline ore mining by sublevel caving. Gornyi Zhurnal. 2023, no. 5, pp. 80—87. [In Russ]. DOI: 10.17580/gzh.2023.05.12.

3. Trushko O. V., Trushko V. L., Demenkov P. A. Construction of underground and multi-story car parks in high-density urban areas. International Journal of Engineering, Transactions B: Applications. 2024, vol. 37, no. 2, pp. 224—236. DOI: 10.5829/IJE.2024.37.02B.02.

4. Franco V. H., Gitirana G. D. F. N., de Assis A. P. Probabilistic assessment of tunneling-induced building damage. Computers and Geotechnics. 2019, vol. 113, article 103097. DOI: 10.1016/j.compgeo.2019.103097.

5. Salahudeen A. B., Yisa G. L. Settlement, slope stability and seepage analyses by numerical modelling method and their applications in practice. Nigerian Journal of Technology. 2023, vol. 42, no. 3, pp. 306—314. DOI: 10.4314/njt.v42i3.2.

6. Ninić J., Gamra A., Ghiassi B. Real-time assessment of tunnelling-induced damage to structures within the building information modelling framework. Underground Space. 2024, vol. 14, pp. 99—117. DOI: 10.1016/j.undsp.2023.05.010.

7. Vitali O. P. M., Celestino T. B., Bobet A. New modeling approach for tunnels under complex ground and loading conditions. Soils and Rocks. 2021, vol. 44, no. 1, pp. 1—8. DOI: 10.28927/ SR.2021.052120.

8. Maazallahi V., Majdi A. Numerical appraisal of rock mass anisotropy effect on elastic deformations of a circular tunnel. Arabian Journal of Geosciences. 2020, vol. 13, article 547. DOI: 10.1007/ s12517-020-05531-3.

9. Alekseev A. V., Verbilo P. E. Numerical modeling of stability of the forehead of the face in the area of heterogeneity with undrained array mode. News of the Ural State Mining University. 2019, vol. 53, no. 1, pp. 80—87. [In Russ]. DOI: 10.21440/2307-2091-2019-1-80-87.

10. Zhang Z., Chen Y., Han K., Wei G., Pan Y., Sun M. Mathematical modelling for interaction between soft ground and small curvature shield tunneling considering viscoelastic characteristics influences. Applied Mathematical Modelling. 2024, vol. 127, pp. 607—639. DOI: 10.1016/j.apm.2023.12.020.

11. Wang Z., Guo W., Ding W., Liu K., Qin W., Wang C., Wang Z. Numerical study on the hydrodynamic properties of bentonite slurries with Herschel-Bulkley-Papanastasiou rheology model. Powder Technology. 2023, vol. 419, article 118375. DOI: 10.1016/j.powtec.2023.118375.

12. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko Geolosko Naftni Zbornik. 2022, no. 12, pp. 151—162. DOI: 10.17794/rgn.2022.1.13.

13. Protosenya А. G., Alekseev А. V., Verbilo P. E. Prediction of the stress-strain state and stability of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

14. Wu H., Yang X. H., Cai S. C., Zhao B., Zheng K. Analysis of stress and deformation characteristics of deep-buried phyllite tunnel structure under different cross-section forms and initial support parameters. Advances in Civil Engineering. 2021, vol. 2021, article 8824793. DOI: 10.1155/2021/8824793.

15. Baryakh A. A., Devyatkov S. Yu., Denkevich E. T. Mathematical modelling of displacement during the potash ores mining by longwall faces. Journal of Mining Institute. 2023, vol. 259, pp. 13—20. [In Russ]. DOI: 10.31897/PMI.2023.11.

16. Cheng H., Chen J., Chen G. Analysis of ground surface settlement induced by a large EPB shield tunnelling: a case study in Beijing, China. Environmental Earth Sciences. 2019, vol. 78, article 605. DOI: 10.1007/s12665-019-8620-6.

17. Wang R., Zhang J., Liu X. A most-unfavorable-condition method for bridge-damage detection and analysis using PSP-InSAR. Remote Sensing. 2022, vol. 14, article 137. DOI: 10.3390/rs14010137.

18. Zhao C., Lavasan A. A., Hölter R., Schanz T. Mechanized tunneling induced building settlements and design of optimal monitoring strategies based on sensitivity field. Computers and Geotechnics. 2018, vol. 97, pp. 246—260. DOI: 10.1016/j.compgeo.2018.01.007.

19. Bilotta E., Paolillo А., Russo G., Aversa S. Displacements induced by tunnelling under a historical building. Tunnelling and Underground Space Technology. 2017, vol. 61, pp. 221—232. DOI: 10.1016/j.tust.2016.10.007.

20. Hatoum H. M, Mustafin M. G. Optimization of locating robotic total stations for determing the deformations of buildings and structures. Geodeziya i Kartografiya. 2020, vol. 81, no. 9, pp. 2—13. [In Russ]. DOI: 10.22389/0016-7126-2020-963-9-2-13.

21. Zhao Y., Chen X., Hu B., Huang L., Lu G., Yao H. Automatic monitoring and control of excavation disturbance of an ultra-deep foundation pit extremely adjacent to metro tunnels. Tunnelling and Underground Space Technology. 2023, vol. 142, article 105445. DOI: 10.1016/j.tust.2023.105445.

22. Mazein S. V., Kuzina A. V., Mishedchenko O. A. Justification and results of building deformations monitoring in the influence zone of tunnel and pit construction. Transport construction. 2022, no. 3, pp. 10—12. [In Russ].

23. Allasia P., Godone D., Giordan D., Guenzi D., Lollino G. Advances on measuring deep-seated ground deformations using robotized inclinometer system. Sensors. 2020, vol. 20, article 3769. DOI: 10.3390/s20133769.

24. Ha D. W., Kim J. M., Kim Y., Park H. S. Development and application of a wireless MEMSbased borehole inclinometer for automated measurement of ground movement. Automation in Construction. 2018, vol. 87, pp. 49—59. DOI: 10.1016/j.autcon.2017.12.011.

25. Song H., Pei H., Zhu H. Monitoring of tunnel excavation based on the fiber Bragg grating sensing technology. Measurement. 2021, vol. 169, article 108334. DOI: 10.1016/j.measurement.2020.108334.

26. Li C., Hou S., Liu Y., Qin P., Jin F., Yang Q. Analysis on the crown convergence deformation of surrounding rock for double-shield TBM tunnel based on advance borehole monitoring and inversion analysis. Tunnelling and Underground Space Technology. 2020, vol. 103, article 103513. DOI: 10.1016/j.tust.2020.103513.

27. Falbe-Hansen K., Paulatto E., Arce Juliao I. Monitoring cityringen metro project in Copenhagen, Denmark. Proceedings of the Institution of Civil Engineers — Civil Engineering. 2018, vol. 171, no. 5, pp. 39—47. DOI: 10.1680/jcien.17.00024.

28. Nejjar K., Dias D., Cuira F., Chapron G., Lebissonnais H. Experimental study of the performance of a 32 m deep excavation in the suburbs of Paris. Geotechnique. 2022, vol. 73, no. 6, pp. 469—479. DOI: 10.1680/jgeot.21.00017.

29. Rezaei A. H., Ahmadi-adli M. The volume loss: real estimation and its effect on surface settlements due to excavation of Tabriz metro tunnel. Geotechnical and Geological Engineering. 2020, vol. 38, pp. 2663—2684. DOI: 10.1007/s10706-019-01177-5.

30. Volkov V. P., Naumov S. N., Pirozhkova A. N., Khrapov V. G. Tonneli i metropoliteny [Tunnels and subways], Moscow, Transport, 1975, 551 p.

31. Golitsynskiy D. M., Frolov Yu. S., Kulagin N. I. Stroitel'stvo tonneley i metropolitenov [Tunnels and subways construction], Moscow, Transport, 1989, 319 p.

32. Lebedev M. O., Karasev M. A., Belyakov N. A., Basova L. A. Face stability in heavy clay: theory and practice. Journal of Mining Science. 2022, vol. 58, pp. 234—245. DOI: 10.1134/S1062739122020077.

33. Soloviev D. A., Antsiferov S. V., Sammal A. S., Deev P. V. Interacting massif of proterosoic clays with advanced anchor lining. News of the Tula state university. Sciences of Earth. 2022, no. 1, pp. 363—372. [In Russ]. DOI: 10.46689/2218-5194-2022-1-1-363-372.

34. Hsu C.-F., Tsai Y.-H., Chen Y.-R., Li Y.-F., Chen S.-L. Normalized analysis of deformation for deep excavation diaphragm walls under different neighboring building conditions. Results in Engineering. 2024, vol. 22, article 102155. DOI: 10.1016/j.rineng.2024.102155.

35. Frenelus W., Peng H., Zhang J. Creep behavior of rocks and its application to the longterm stability of deep rock tunnels. Applied Sciences. 2022, vol. 12, no. 17, pp. 1—35. DOI: 10.3390/ app12178451.

36. Vasenin V. A. Evaluation of disturbed parameters of the natural structure of the laboratory samples of clay deposits during engineering and geological surveys in Saint Petersburg territory and nearest areas. Inzhenernaya geologiya. 2018, no. 6, pp. 48—65. [In Russ]. DOI: 10.25296/1993-5056-201813-6-48-65.

37. Dashko R. E., Lokhmatikov G. A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis. Journal of Mining Institute. 2022, vol. 254, pp. 180—190. [In Russ]. DOI: 10.31897/PMI.2022.13.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.