Effectiveness analysis of ultra high frequency treatment of pyrite-bearing ore

This article describes the study into effectiveness of ultra high frequency (UHF) exposure of metal-bearing ore for its softening. The review of the domestic and foreign research on this topic is implemented: the reasons of high interest in development and application of energy-efficient technologies are explained; the basic notions, potential and relevancy of UHF energy application in mineral processing are revealed; the retrospective data on the amount of annual research in the field of UHF effects on rocks are presented; the main achievements and science gaps are described. The patterns of change in the UHF treatment effectiveness as function of percentage and size of pyrite grains are experimentally found as a case-study of quartz–pyrite ore samples. In particular, it is determined that the content of pyrite has a higher influence on the UHF treatment efficiency than the coarseness of pyrite grains, and the rate of temperature growth is higher and the “temperature stabilization” period arrives earlier in the samples with the higher pyrite content. Furthermore, beyond the zone of “temperature stabilization” in the samples with the higher content of pyrite, the temperature grows more intensively, which may imply a sharp rise in the density of the crystal lattice in such samples in their further heating.

Keywords: processing, pyrite-bearing ore, UHF treatment effectiveness, stabilization temperature, structural changes, ore softening, rock relaxation, energy efficiency.
For citation:

Vinnikov V. A., Zemlianskii G. S. Effectiveness analysis of ultra high frequency treatment of pyrite-bearing ore. MIAB. Mining Inf. Anal. Bull. 2024;(4):22-32. [In Russ]. DOI: 10.25018/0236_1493_2024_4_0_22.

Acknowledgements:
Issue number: 4
Year: 2024
Page number: 22-32
ISBN: 0236-1493
UDK: 622.02; 622.023
DOI: 10.25018/0236_1493_2024_4_0_22
Article receipt date: 18.01.2024
Date of review receipt: 20.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

V.A. Vinnikov1, Dr. Sci. (Phys. Mathem.), Head of Chair, e-mail: evgeny.vinnikov@gmail.com,
G.S. Zemlianskii1, Graduate Student, e-mail: zemlianskygrigory@yandex.ru, ORCID ID: 0009-0008-5642-6509,
1 University of Science and Technology MISIS, 119049, Moscow, Russia.

 

For contacts:

G.S. Zemlianskii, e-mail: zemlianskygrigory@yandex.ru.

Bibliography:

1. Chanturia V. A. Scientific substantiation and development of innovative processes for complex processing of mineral raw materials. Gornyi Zhurnal. 2017, no. 11, pp. 6—13. [In Russ]. DOI: 10.17580/ gzh.2017.11.01.

2. Chanturiya V. A., Bunin I. Z. Non-traditional high-energy processes for disintegration and exposure of finely disseminated mineral complexes. Journal of Mining Science. 2007, vol. 43, no. 3, pp. 311— 330. DOI: 10.1007/s10913-007-0032-4.

3. Chanturiya V. A., Bunin I. Zh., Ryazantseva M. V., Filippov L. O. Theory and application of highpower nanosecond pulses to processing of mineral complexes. Mineral Processing and Extractive Metallurgy Review. 2011, vol. 32, no. 2, pp. 105—136. [In Russ]. DOI: 10.1080/08827508.2010.530722.

4. Rakhmankulov D. L., Shavshukova S. Yu., Vikhareva I. N., Chanyshev R. R. Experience of application of microwaves energy in mining. Bashkir Chemical Journal. 2008, vol. 15, no. 2, pp. 114—117. [In Russ].

5. Tazhibaev K. T., Makanov K. M. Strength reduction of rocks and ores by microwave radiation. Vestnik KRSU. 2022, vol. 22, no. 123, pp. 197—201. [In Russ]. DOI: 10.36979/1694-500X-2022-2212-197-201.

6. Blinov L. M., Gerasimenko A. P., Gulyaev Yu. V., Dolgolaptev A. V., Cherepenin V. A. About a possible development of an explosive massive hard rocks-dielectrics destruction technology, based on a directed concentrated electromagnetic microwave power flux. Journal of Radio Electronics. 2019, no. 2, pp. 129—134. [In Russ]. DOI: 10.30898/1684-1719.2019.2.4.

7. Martirosyan A. V., Gurgenyan N. V., Grigoryan A. E., Kostandyan M. F., Vardanyan N. K. Tanosyan G. V. Development of technology for producing composite thermal insulation foam based on aluminosilicate rock waste using microwave heating. Transactions of the Kola science centre. Series: Engineering sciences. 2023, vol. 14, no. 4, pp. 188—194. [In Russ]. DOI: 10.37614/2949-1215.2023. 14.4.032.

8. Buttress A. J., Rodriguez J. M., Ure A., Ferrari R. S., Dodds C., Kingman S. W. Production of high purity silica by microfluidic-inclusion fracture using microwave pre-tratment. Minerals Engineering. 2019, vol. 131, pp. 407—410. DOI: 10.1016/j.mineng.2018.11.025.

9. Vorster W. The effect of microwave radiation on mineral processing. Birmingham. 2001, 256 p.

10. Khvan A. B., Kolesnik V. G., Sattarov G. S., Latyshev V. E., Urusova E. V. A Study of the possibility to use the UHF field for preparation of ore in gold production. Mining Bulletin of Uzbekistan. 2002, no. 2(9), pp. 56—60. [In Russ].

11. Marion Ch., Jordens A., Maloney C., Langlois R. Effect of micrpwave radiation on the pressing of a Cu-Ni sulfide ore. The Canadian Journal of Chemical Engineering. 2016, vol. 94, no. 1, pp. 117— 127. DOI: 10.1002/cjce.22359.

12. Bunin I. Z., Ryazantseva M. V., Samusev A. L., Khabarova, I. A. Composite physicochemical and energy action on geomaterials and aqueous slurries: theory and practice. Gornyi Zhurnal. 2017, no. 11, pp. 77—83. [In Russ]. DOI: 10.17580/gzh.2017.11.14.

13. Huang W., Chen Y. The application of high voltage pulses in the mineral processing industry. A review. Powder Technology. 2021, vol. 393, pp. 116—130. DOI: 10.1016/j.powtec.2021.07.003.

14. Weisberg L. A., Safronov A. N. Innovative crushing and grinding equipment of vibration action for processing raw materials and industrial waste. Ecology and industry of Russia. 2019, no. 23(7), pp. 4—9. [In Russ]. DOI: 10.18412/18160395-2019-7-4−9.

15. Tuktarova N. Z., Danilov O. S. Extraction of noble and non-ferrous metals from technogenic raw materials of the Norilsk industrial region. Scientific bulletin of the Arctic. 2022, no. 13, pp. 113— 118. [In Russ]. DOI: 10.52978/25421220_2022_13_113-118.

16. Tazhibaev K. T., Akmatalieva M. S. The results of the study of acoustic, deformation properties, changes in the energy consumption of crushing granite and metasamotite under the influence of super high frequency waves. Sovremennye problemy mekhaniki. 2022, no. 47(1), pp. 3—11. [In Russ].

17. Sultanalieva R. M., Konushbaeva A. T., Belekova Zh. Sh. Structural analysis of rock mineral grains in superhigh-frequency fields. International Journal of Applied and Fundamental Research. 2022, no. 11, pp. 97—102. [In Russ]. DOI: 10.17513/mjpfi.13474.

18. Sultanalieva R. M., Konushbaeva A. T., Turdubaeva Ch. B. Investigation of the energy intensity of rock destruction from the effect of the temperature-time regime of microwave fields. International Journal of Applied and Fundamental Research. 2019, no. 12-2, pp. 187—191. [In Russ].

19. Bobicki E. R., Pickles C. A., Forster J., Hutcheon R. High temperature permittivity measurements of selected industrially relevant ores: Review and analysis. Minerals Engineering. 2019, vol. 145. DOI: 10.1016/j.mineng.2019.106055.

20. Sultanalieva R. M., Konushbaeva A. T., Turdubaeva Ch. B. Determination of thermal parameters of rocks at high temperatures. Proceedings of the Kyrgyz State Technical University named after I. Razzakov. 2023, no. 1(65), pp. 585—590. [In Russ]. DOI: 10.56634/16948335.2023.1.585-590.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.