Bibliography: 1. Shagapov V. Sh., Rafikova G. R., Mamaeva Z. Z. Dynamics of pressure fields in the formation and in the hf fracture during natural oscillations of the liquid column in the well. Journal of Engineering Physics and Thermophysics. 2023, vol. 96, no. 6, pp. 1494—1501. [In Russ].
2. Anosova E. P., Nagaeva Z. M., Shagapov V. Sh. Fluid flow to a well through a radial hydraulic fracture in a porous medium at constant flow rate. Fluid Dynamics. 2023, no. 2, pp. 90—101. [In Russ].
3. Zhao H., Zhang Y., Hu J. Investigation on invasion depth of fracturing fluid during horizontal fracturing in low-permeability oil reservoirs with experiments and mathematical models. Energies. 2023, vol. 16, no. 13, article 5148. DOI: 10.3390/en16135148.
4. Meng Y., Li Z., Lai F. Evaluating the filtration property of fracturing fluid and fracture conductivity of coalbed methane wells considering the stress-sensitivity effects. Journal of Natural Gas Science & Engineering. 2020, vol. 80, no. 3, pp. 1—10. DOI: 10.1016/j.jngse.2020.103379.
5. Ma Y., Wan L., Hou W., Xing Q. Geomechanical analysis of lost circulation control in tight formations. Frontiers in Earth Science. 2024, vol. 12, pp. 1—9. DOI: 10.3389/feart.2024.1349634.
6. Ibrahim M. A., Jaafar M. Z., Yusof M. A. M., Shye C. A., Suardi H., Hussin M. F. M., Razali A. Z., Idris A. K. The influence of nanoparticle size, concentration, and functionalization on drilling fluid filtration properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2024, vol. 693, article 134020. DOI: 10.1016/j.colsurfa.2024.134020.
7. Lekomtsev A., Keykhosravi A., Moghaddam M. B., Daneshfar R., Rezvanjou O. On the prediction of filtration volume of drilling fluids containing different types of nanoparticles by ELM and PSOLSSVM based models. Petroleum. 2022, vol. 8, no. 3, pp. 424—35. DOI: 10.1016/j.petlm.2021.04.002.
8. Cheraghian G. Nanoparticles in drilling fluid. A review of the state-of-the-art. Journal of Materials Research and Technology. 2021, vol. 13, pp. 737—753. DOI: 10.1016/j.jmrt.2021.04.089.
9. Al-Shargabi M., Davoodi S., Wood D. A., Al-Musai A., Rukavishnikov V. S., Minaev K. M. Nanoparticle applications as beneficial oil and gas drilling fluid additives. A review. Journal of Molecular Liquids. 2022, vol. 352, article 118725. DOI: 10.1016/j.molliq.2022.118725.
10. Amanullah M., Ramasamy J. Potential application of nanomaterials in oil and gas field drilling tools and fluids design. Journal of Chemistry and Chemical Engineering. 2018, vol. 12, no. 3, pp. 96—110. DOI: 10.17265/1934-7375/2018.03.003.
11. Fakoya M. F., Shah S. N. Effect of silica nanoparticles on the rheological properties and filtration performance of surfactant-based and polymeric fracturing fluids and their blends. SPE Drilling and Completion. 2018, vol. 33, no. 2, pp. 100—114. DOI: 10.2118/163921-pa.
12. Safiullin I. R., Volkov M. G., Voloshin A. I., Miroshnichenko V. P., Shchutsky G. A., Sharapov R. R., Garayeva N. V., Fakhreeva A. V. Influence of suspended solid particles in injected water on reservoir properties of low-permeability formations. Oil Industry Journal. 2023, no. 2, pp. 84—88. [In Russ].
13. Mikhailov N. N., Tumanova E. S., Zaitsev M. V. Power law of filtration and its consequences for low-permeable reservoirs. Oil Industry Journal. 2020, no. 4, pp. 34—37. [In Russ].
14. Barati R. Application of nanoparticles as fluid loss control additives for hydraulic fracturing of tight and ultra-tight hydrocarbon-bearing formations. Journal of Natural Gas Science and Engineering. 2015, vol. 27, no. 3, pp. 1321—1327. DOI: 10.1016/j.jngse.2015.03.028.
15. Maulianda B., Savitri C. D., Prakasan A., Atdayev E., Yan T. W., Yong Y. K., Elrais K. A., Barati R. Recent comprehensive review for extended finite element method (XFEM) based on hydraulic fracturing models for unconventional hydrocarbon reservoirs. Journal of Petroleum Exploration and Production Technology. 2020, vol. 10, no. 8, pp. 3319—3331. DOI: 10.1007/s13202-020-00919-z.
16. Minakov A. V., Mikhienkova E. I., Voronenkova Y. O., Neverov A. L., Zeer G. M., Zharkov S. M. Systematic experimental investigation of filtration losses of drilling fluids containing silicon oxide nanoparticle. Journal of Natural Gas Science and Engineering. 2019, vol. 71, article 102984. DOI: 10.1016/j.jngse.2019.102984.
17. Dukhin A. S. Acoustic spectroscopy for particle size measurement of concentrated nanodispersions. Characterization of Nanoparticles, Amsterdam, Elsevier, 2020, ch. 3.2.4, pp. 197—211. DOI: 10.1016/b978-0-12-814182-3.00013-4.
18. Minakov A. V., Mikhienkova E. I., Zhigarev V. A., Neverov A. L. An experimental study of the influence of added nanoparticles on the filtration of microsuspensions via porous media. Pis’ma v Zhurnal Tekhnicheskoi Fiziki. 2018, vol. 44, no. 12, pp. 62—67. [In Russ]. DOI: 10.21883/PJTF. 2018.12.46292.17232.
19. Minakov A. V., Lysakova E. I., Skorobogatova A. D., Pryazhnikov M. I., Ivleva Y. O., Voronin A. S., Simunin M. M. Experimental study of the effect of crystalline aluminum oxide nanofibers on the properties of oil-based drilling fluids. Journal of Molecular Liquids. 2023, vol. 388, article 122676. DOI: 10.1016/j.molliq.2023.122676.
20. Abrams A. Mud design to minimize rock impairment due to particle invasion. Journal of Petroleum Technology. 1977, vol. 29, no. 5, pp. 586—592. DOI: 10.2118/5713-PA.
21. Klungtvedt K. R., Saasen A. Invasion of CaCO3 particles and polymers into porous formations in presence of fibres. Journal of Petroleum Science and Engineering. 2022, vol. 215, article 110614. DOI: 10.1016/j.petrol.2022.110614.