Research of the physico-chemical properties of hydrogel as a means of dust-explosion protection and dust reduction in coal mines

Explosive coal dust, along with methane, in case of non-compliance with the procedure and schedule for carrying out explosion protection measures or their insufficient effectiveness are a tremendous danger to mine workers and enterprise infrastructure. This is confirmed by the explosions of dust-methane-air mixtures that occur with frightening frequency – almost every 3–5 years. Rock dusting of mine workings, which is today the dominant method of preventing explosions of accumulated coal dust, is applicable mainly to «dry» workings and is effective only if an inert material is applied in an amount not less than the calculated one, in compliance with the regulated frequency. Carrying out these procedures is accompanied by a sharp increase in dustiness, which reduces visibility and, as a result, increases the risk of incidents, injuries and the development of pulmonary diseases among workers. In order to improve the labor safety of coal mine workers, the authors of the article propose to consider a weakly concentrated aqueous solution of subabsorbent (hydrogel) as a means of dust and explosion protection. Its main advantages are environmental friendliness, relative harmlessness, efficiency, high water-holding capacity, due to which explosive coal dust will be wet for a long time on the surface of mine workings and will not be able to turn into an aerosol. The article presents the results of laboratory studies of the chemical composition of the subabsorbent brand «Aquasin-P» or «Hydroplast», as well as a number of physical properties of hydrogels prepared on its basis (viscosity, fluidity, drying time mixed with coal dust).

Keywords: coal mines, dust deposition intensity, dust content, dust-explosion protection, rock dusting, dust binding, super absorbent, hydrogel, fluidity, moisture.
For citation:

Kornev A. V., Spitsyn A. A., Zaimentseva L. A., Zubko M. V. Research of the physico-chemical properties of hydrogel as a means of dust-explosion protection and dust reduction in coal mines. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):180-198. [In Russ]. DOI: 10. 25018/0236_1493_2023_91_0_180.

Issue number: 9
Year: 2023
Page number: 180-198
ISBN: 0236-1493
UDK: 622.807, 622.81
DOI: 10.25018/0236_1493_2023_91_0_180
Article receipt date: 23.06.2023
Date of review receipt: 26.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

A.V. Kornev1, Cand. Sci. (Eng.), Associate Professor, e-mail:, ORCID ID: 0000-0001-6371-9969,
A.A. Spitsyn1, Graduate Student, e-mail:, ORCID ID: 0000-0003-1148-6109,
L.A. Zaimentseva, 2nd Category Engineer, LLC «Gazprom processing», Saint-Petersburg, 194044, Russia, e-mail:, ORCID ID: 0009-0008-5948-6435,
M.V. Zubko1, Student, e-mail:, ORCID ID: 0009-0006-9100-5190,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.V. Kornev, e-mail:


1. Glebova E. V., Volokhina A. T., Vikhrov A. E. Assessment of the efficiency of occupational safety culture management in fuel and energy companies. Journal of Mining Institute. 2023, vol. 259, pp. 68—78. [In Russ]. DOI: 10.31897/PMI.2023.12.

2. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, vol. 1, pp. 107—115. DOI: 10.33271/nvngu/2022-1/107.

3. Zhang L., Ponomarenko T. Directions for sustainable development of China’s coal industry in the post-epidemic era. Sustainability. 2023, vol. 15, pp. 6518—6518. DOI: 10.3390/su15086518.

4. Tsiglianu P., Romasheva N., Nenko A. Conceptual management framework for oil and gas engineering project implementation. Resources. 2023, vol. 12, no. 6, article 64. DOI: 10.3390/ resources12060064.

5. Ermolaev A. M., Kobylyansky M. T. Analysis and ways to reduce fatal injuries in the coal industry. Bulletin of the Scientific Center of VostNII on Industrial and Environmental Safety. 2017, no. 2, pp. 91—100. [In Russ].

6. Fomin A. I. Analysis of conditions and labor protection at enteprises of Kuzbass coal industry. Bulletin of the Scientific Center of VostNII on Industrial and Environmental Safety. 2020, no. 3, pp. 57—61. [In Russ]. DOI: 10.25558/VOSTNII.2020.53.88.007.

7. Gridina E. B., Borovikov D. O. Identification of the causes of injuries based on occupational risk assessment maps at the open-pit coal. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 114—128. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_114.

8. Korshunov G. I., Karimov A. M., Magamedov G. S., Tyulkin S. A. Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2023, no. 7, pp. 132—144. [In Russ]. DOI: 10.25018/0236_1493_2023_7_0_132.

9. Ivanov Yu. M., Kurakina N. V., Fomin A. I., Li Khi Un, Voroshilov A. S. Analysis of injury rate as related to employee’s labour experience. injury risk assessment. Ugol’. 2022, no. 2, pp. 37—40. [In Russ]. DOI: 10.18796/0041-5790-2022-2-37-40.

10. Mokhnachuk I. I., Piktushanskaya T. E., Bryleva M. S., Betts K. V. Workplace mortality at coal industry enterprises of Russia. Russian Journal of Occupational Health and Industrial Ecology. 2023, no. 63(2), pp. 88—93. [In Russ]. DOI: 10.31089/1026-9428-2023-63-2-88-93.

11. Kabanov E. I., Korshunov G. I., Magomet R. D. Quantitative risk assessment of miners injury during explosions of methane-dust-air mixtures in underground workings. Journal of Applied Science and Engineering. 2020, vol. 24, no. 1, pp. 105—110. DOI: 10.6180/jase. 202102_24(1).0014.

12. Korobeynikova E. A., Panarina A. V., Kuksova K. D., Pudovkina A. A. Explosion at the Listvyazhnaya mine: reasoning and conclusions. Nauka Rossii — budushchee strany: Sbornik statey Vserossiyskoy nauchno-prakticheskoy konferentsii [Science of Russia — the Future of the Country: Collection of Articles of the All-Russian Scientific and Practical Conference], Penza, 2022, pp. 230—235. [In Russ].

13. Litvinov A. R., Kolikov K. S., Ishkhneli O. G. Accident and injuries at the enterprises of the coal industry in 2010–2015. Vestnik of safety in coal mining scientific center. 2017, no. 2, pp. 6—17. [In Russ].

14. Peters S., de Klerk N., Reid A., Fritschi L., Musk A. B., Vermeulen R. Quantitative levels of diesel exhaust exposure and the health impact in the contemporary Australian mining industry. Occupational and Environmental Medicine. 2017, vol. 74, no. 4, pp. 282—289. DOI: 10.1136/oemed-2016-103808.

15. Saarikoski S., Teinilä K., Timonen H., Aurela M., Laaksovirta T., Reyes F., Vasques Y., Oyola P., Artaxo P., Pennanen S., Junttila S., Linnainmaa M., Salonen R. O., Hillamo R. Particulate matter characteristics, dynamics and sources in an underground mine. Aerosol Science and Technology. 2018, vol. 52, no. 1, pp. 114—122. DOI: 10.1080/02786826.2017.1384788.

16. Eremeeva A. M., Kondrasheva N. K., Khasanov A. F., Oleynik I. L. Environmentally friendly diesel fuel obtained from vegetable raw materials and hydrocarbon crude. Energies. 2023, vol. 16, no. 5, article 2121. DOI: 10.3390/en16052121.

17. Kondrasheva N. K., Eremeeva A. M. Production of biodiesel fuel from vegetable raw materials. Journal of Mining Institute. 2023, vol. 260, pp. 248—256. [In Russ]. DOI: 10.31897/ PMI.2022.15.

18. Balovtsev S. V. Higher rank aerological risks in coal mines. Mining Science and Technology (Russia). 2022, vol. 7, no. 4, pp. 310—319. DOI: 10.17073/2500-0632-2022-08-18.

19. Balovtsev S. V., Skopintseva O. V., Kulikova E. Yu. Hierarchical structure of aerological risks in coal mines. Sustainable Development of Mountain Territories. 2022, vol. 14, no. 2, pp. 276—285. [In Russ]. DOI: 10.21177/1998-4502-2022-14-2-276-285.

20. Vasilenko T. A., Islamov A., Doroshkevich A. S., Ludzik K., Chudoba D., Кirillov А., Mita C. Permeability of a coal seam with respect to fractal features of pore space of fossil coals. Fuel. 2022, vol. 329, article 125113. DOI: 10.1016/j.fuel.2022.125113.

21. Martirosyan A. V., Ilyushin Yu. V. The development of the toxic and flammable gases concentration monitoring system for coalmines. Energies. 2022, vol. 15, no. 23, article 8917. DOI: 10.3390/en15238917.

22. Gendler S. G., Fazylov I. R., Abashin A. N. The results of experimental studies of the thermal regime of oil mines in the thermal method of oil production. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 248—262. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_248.

23. Alabyev V. R., Novikov V. V., Pashinyan L. A., Bazhina T. P. Normalization of thermal mode of extended blind workings operating at high temperatures based on mobile mine air conditioners. Journal of Mining Institute. 2019, vol. 237, pp. 251—258. [In Russ]. DOI: 10.31897/ pmi.2019.3.251.

24. Berezovskaia A. V., Fomin A. I. Miners' health hazards and measures to counteract these risks. International Research Journal. 2023, no. 5(131), pp. 1—8. [In Russ]. DOI: 10.23670/ IRJ.2023.131.17.

25. Khomenko A. O., Yakshina N. V., Mushnikov V. S., Ilyin S. M., Samarskaya N. A., Chekmareva M. A. The influence of vibroacoustic factors on the safety and health of industrial employees. Ekonomika truda. 2022, vol. 9, no. 12, pp. 2175—2196. [In Russ]. DOI: 10.18334/ et.9.12.116410.

26. Skopintseva O. V., Vertinskiy A. S., Ilyakhin S. V., Savelev D. I., Prokopovich A. Yu. Substantiation of efficient parameters of dust-controlling processing of coal massif in mines. Gornyi Zhurnal. 2014, no. 5, pp. 17—20. [In Russ].

27. Borowski G., Smirnov Y. D., Ivanov A. V., Danilov A. S. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 42, no. 8, pp. 2345—2356. DOI: 10.1080/19392699.2020.1841177.

28. Wang H., Cheng S., Wang H., He J., Fan L., Danilov A. S. Synthesis and properties of coal dust suppressant based on microalgae oil extraction. Fuel. 2023, vol. 338, article 127273. DOI: 10.1016/j.fuel.2022.127273.

29. Wang Q. G., Wang D. M., Wang H. T., Shen Y. D., Zhu X. L. Experimental investigations of a new surfactant adding device used for mine dust control. Powder Technology. 2018, no. 327, рp. 303—309.

30. Kornev A. V., Ledyaev N. V., Kabanov E. I., Korneva M. V. Estimation of predictive dust content in the faces of coal mines taking into account the peculiarities of the wettability of coal dust. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 115—134. [In Russ]. DOI: 10.25018/02 36_1493_2022_62_0_115.

31. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71—81. [In Russ]. DOI: 10.31897/PMI.2022.12.

32. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022, vol. 981, no. 3, article 032024. DOI: 10.1088/1755-1315/981/3/032024.

33. Harris M. L., Sapko M. L. Floor dust erosion during early stages of coal dust explosion development. International Journal of Mining Science and Technology. 2019, vol. 29, no. 6, pp. 825—830. DOI: 10.1016/j.ijmst.2019.09.001.

34. Zhang H., Han W., Xu Y., Wang Z. Analysis on the development status of coal mine dust disaster prevention technology in China. Journal of Healthcare Engineering. 2021, vol. 2021, article 5574579. DOI: 10.1155/2021/5574579.

35. Zavyalova E. L., Zavyalov G. V. Development of means for localization of the coal dust explosions. Occupational Safety in Industry. 2022, no. 12, pp. 13—19. [In Russ]. DOI: 10.24000/0409-2961-2022-12-13-19.

36. Luo Y., Wang D., Cheng J. Effects of rock dusting in preventing and reducing intensity of coal mine explosions. International Journal of Coal Science and Technology. 2017, vol. 4, no. 2, pp. 102—109. DOI: 10.1007/s40789-017-0168-z.

37. Romanchenko S. B., Kosterenko V. N. Coal dust explosions full-scale research and localization means efficiency criteria.Vestnik of safety in coal mining scientific center. 2018, no. 4, pp. 6—20. [In Russ].

38. Harteis S. P., Alexander D. W., Harris M. L., Sapko M. J., Weiss E. S. Review of rock dusting practices in underground coal mines. Report of investigations (National Institute for Occupational Safety and Health) 9530. DHHS publication; no. (NIOSH) 2017–101. https://stacks.

39. Ren X., Xue D., Li Y., Hu X., Shao Z., Cheng W., Dong H., Zhao Y., Xin L., Lu W. Novel sodium silicate polymer composite gels for the prevention of spontaneous combustion of coal. Journal of Hazardous Materials. 2019, vol. 371, pp. 643—654. DOI: 10.1016/j.jhazmat. 2019.03.041.

40. Jiang Z., Dou G. Preparation and characterization of chitosan grafting hydrogel for mine-fire fighting. ACS Omega, 2020. vol. 5, no. 5, pp. 2303—2309. DOI: 10.1021/acsomega. 9b03551.

41. Patra S. K., Poddar R., Brestic M., Acharjee P. U., Bhattacharya P., Sengupta S., Pal P., Bam N., Biswas B., Barek V., Ondrisik P., Skalicky M., Hossain A. Prospects of hydrogels in agriculture for enhancing water productivity under water deficit condition. Hindawi International Journal of Polymer Science. 2022, vol. 2022, article 4914836. DOI: 10.1155/2022/4914836.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.