Stress–strain analysis of vertical shaft lining and adjacent rock mass under conditions of irregular contour

The mathematical modeling is used to analyze the influence of the irregular shaft contour on the stress nonuniformity in adjacent rock mass and at the shaft lining. In mine shaft construction, the final profile of the lining is often imperfect. At the irregular contour of the lining, redistribution of loading takes place, which leads to the stress concentration and adversely affects the lining efficiency. At the present time, in solving such problems in geomechanics, it is uncommon to consider the contour irregularity explicitly, but the rise in the computational capabilities makes the latter possible. The modeling embraces three scenarios of stress distribution at the contour of the vertical shaft lining at different conditions. It is found that the stress level in adjacent rock mass is governed by the geometry of the lining contour irregularity and by the orientation of the principal stress vector. The qualitative correlation of the irregularity geometry and tangential stresses at the lining contour, as well as the relation of plastic strains and the irregularity geometry are obtained. It is impossible to completely avoid the contour irregularity at this stage of the mining industry. For this reason, it is required to calculate carefully explosive charges, and to take into account geology and tectonics of a mineral deposit, and many other factors.

Keywords: vertical shaft, lining, contour irregularity, stress–strain behavior, rock pressure, rock mass, stresses, strains.
For citation:

Demenkov P. A., Romanova Е. L., Kotikov D. A. Stress–strain analysis of vertical shaft lining and adjacent rock mass under conditions of irregular contour. MIAB. Mining Inf. Anal. Bull. 2023;(11):33-48. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_33.

Issue number: 11
Year: 2023
Page number: 33-48
ISBN: 0236-1493
UDK: 622.02
DOI: 10.25018/0236_1493_2023_11_0_33
Article receipt date: 22.05.2023
Date of review receipt: 15.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

P.A. Demenkov1, Dr. Sci. (Eng.), Professor, Dean of Construction Department, e-mail:, ORCID ID: 0000-0003-1599-8080,
Е.L. Romanova1, Graduate Student, e-mail:, ORCID ID: 0000-0002-4448-4292,
D.A. Kotikov1, Cand. Sci. (Eng.), Senior Researcher, Research Center of Geomechanics and Mining Problems, e-mail:,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

E.L. Romanova, e-mail:


1. Kazikaev D. M., Sergeev S. V. Diagnostika i monitoring napryazhennogo sostoyaniya krepi vertikal'nykh stvolov [Diagnosis and monitoring of stress state of vertical shaft supports], Moscow, Izd-vo «Gornaya kniga», 2011, 244 p.

2. Kozel A. M. Geomekhanicheskie voprosy proektirovaniya i podderzhaniya shakhtnykh stvolov [Geomechanical issues of designing and maintaining mine shafts], Saint-Petersburg, Nedra, 2010, 287 p.

3. Krupennikov G. A., Bulychev N. S., Kozel A. M., Filatov N. A. Vzaimodeystvie massivov gornykh porod s krep'yu vertikal'nykh vyrabotok [Interaction of rock massifs with the support of vertical mine workings], Moscow, Nedra, 1966, 314 p.

4. Trushko V. L., Protosenya A. G., Matveev P. F., Sovmen Kh. M. Geomekhanika massivov i dinamika vyrabotok glubokikh rudnikov [Geomechanics of massifs and dynamics of mine workings of deep mines], Saint-Petersburg, SPbGI, 2000, 396 p.

5. Singh S. P. Prediction and determination of explosive induced damage. Fragblast 4: 4th International conference on rock fragmentation by blasting (Vienna, Austria, July 1993), 1993, pp. 183—192.

6. Himanshu V. K., Mishra A. K., Roy M. P., Vishwakarma A. K., Singh P. K. Numerical simulation based approach for assessment of blast induced deformation pattern in slot raise excavation. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 144, article 104816. DOI: 10.1016/j.ijrmms.2021.104816.

7. Chakraborty A. K., Jethwa J. L., Paithankar A. G. Effects of joint orientation and rock mass quality on tunnel blasting. Engineering Geology. 1994, vol. 37, no. 3-4, pp. 247—262. DOI: 10.1016/0013-7952(94)90059-0.

8. Rybak S. A. Features of construction and fixing of vertical shafts in a tectonically stressed mountain massif. MIAB. Mining Inf. Anal. Bull. 2008, no. 5, pp. 200—206. [In Russ].

9. Dhekne P. Y., Balakrishnan V., Jade R. K. Effect of type of explosive and blast hole diameter on boulder count in limestone quarry blasting. Geotechnical and Geological Engineering. 2020, vol. 38, no. 5, pp. 4091—4097. DOI: 10.1007/s10706-020-01280-y.

10. Agrawal H., Mishra A. K. Probabilistic analysis on scattering effect of initiation systems and concept of modified charge per delay for prediction of blast induced ground vibrations. Measurement. 2018, vol. 130, pp. 306—317. DOI: 10.1016/j.measurement.2018.08.032.

11. Agrawal H., Mishra A. K. Modified scaled distance regression analysis approach for prediction of blast-induced ground vibration in multi-hole blasting. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 1, pp. 202—207. DOI: 10.1016/j.jrmge.2018.07.004.

12. Protosenya A. G., Katerov A. M. Development of stress and strain state of combined support for a vertical shaft driven in salt massif. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 100—113. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_100.

13. Karasev M. A., Protosenya A. G., Katerov A. M., Petrushin V. V. Analysis of shaft lining stress state in anhydrite-rock salt transition zone. Rudarsko Geolosko Naftni Zbornik. 2022, vol. 37, no. 1, pp. 151—162. DOI: 10.17794/rgn.2022.1.13.

14. Walton G., Kim E., Sinha S., Sturgis G., Berberick D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 105, pp. 160—171. DOI: 10.1016/j. ijrmms.2018.03.017.

15. Belyakov N. A., Morozov K. V., Emelyanov I. A. Methodology of processing field test data to assess the natural stress state of the rock massif by the method of ring unloading. Gornyi Zhurnal. 2023, no. 5, pp. 89—96. [In Russ]. DOI: 10.17580/gzh.2023.05.13.

16. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute. 2022, vol. 253, pp. 61—70. [In Russ]. DOI: 10.31897/ PMI.2022.2.

17. Kashnikov Y. A., Ermashov A. O., Efimov A. A. Geological and geomechanical model of the verkhnekamsk potash deposit site. Journal of Mining Institute. 2019, vol. 237, pp. 259—267. [In Russ]. DOI: 10.31897/pmi.2019.3.259.

18. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022, vol. 254, pp. 252—260. [In Russ]. DOI: 10.31897/PMI.2022.26.

19. Chou W. I., Bobet A. Predictions of ground deformations in shallow tunnels in clay. Tunnelling and Underground Space Technology. 2002, vol. 17, no. 1, pp. 3—19. DOI: 10.1016/ S0886-7798(01)00068-2.

20. Yasuda N., Tsukada K., Asakura T. Elastic solutions for circular tunnel with void behind lining. Tunnelling and Underground Space Technology. 2017, vol. 70, pp. 274—285. DOI: 10.1016/j.tust.2017.08.032.

21. Wang J., Huang H., Xie X., Bobet A. Void-induced liner deformation and stress redistribution. Tunnelling and Underground Space Technology. 2014, vol. 40, pp. 263—276. DOI: 10.1016/j.tust.2013.10.008.

22. Yasuda N., Tsukada K., Asakura T. Three-dimensional seismic response of a cylindrical tunnel with voids behind the lining. Tunnelling and Underground Space Technology. 2019, vol. 84, pp. 399—412. DOI: 10.1016/j.tust.2018.11.026.

23. Zeng B., Huang D., He J. Analysis of double-O-tube shield tunnelling-induced soil deformation due to ground loss. Geotechnique Letters. 2016, vol. 6, no. 1, pp. 7—15. DOI: 10.1680/ jgele.15.00099.

24. Erofeev L. M., Miroshnikova L. A. Povyshenie nadezhnosti krepi gornykh vyrabotok [Increasing the reliability of mine workings support], Moscow, Nedra, 1988, 247 p.

25. Chen Z., Jia P. Three-dimensional analysis of effects of ground loss on static and seismic response of shafts. Tunnelling and Underground Space Technology. 2019, vol. 92, article 103067. DOI: 10.1016/j.tust.2019.103067.

26. Bock S. Numerical modelling of a void behind shaft lining using FDM with a concrete spalling algorithm. Journal of Sustainable Mining. 2014, vol. 13, no. 2, pp. 14—21. DOI: 10. 7424/jsm140203.

27. Karasev M. A., Petrushin V. V., Rysin A. I. The hybrid finite/discrete element method in description of macrostructural behavior of salt rocks. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 48—66. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_48.

28. Karasev M. A., Buslova M. A., Vilner M. A., Nguyen T. T. Method for predicting the stress-strain state of the vertical shaft lining at the drift landing section in saliferous rocks. Journal of Mining Institute. 2019, vol. 240, pp. 628—637. [In Russ]. DOI: 10.31897/PMI.2019.6.628.

29. Belyakov N., Smirnova O., Alekseev A., Tan H. Numerical simulation of the mechanical behavior of fiber-reinforced cement composites subjected dynamic loading. Applied Sciences. 2021, vol. 11, no. 3, article 1112. DOI: 10.3390/app11031112.

30. Mustafin M. G., Kologrivko A. A., Vasiliev B. Yu. Accuracy of building digital terrain models based on periodic airborne laser scanning of a mining object. Gornyi Zhurnal. 2023, no. 2, pp. 56— 62. [In Russ]. DOI: 10.17580/gzh.2023.02.09.

31. Belikov A. A., Belyakov N. A. Method of predicting the stress-strain state of interchamber pillars lined with a compliant rope fastener. MIAB. Mining Inf. Anal. Bull. 2023, no. 4, pp. 20—34. [In Russ]. DOI: 10.25018/0236_1493_2023_4_0_20.

32. Protosenya A. G., Katerov A. M. Substantiation of rheological model parameters for salt rock mass. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 16—28. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_16.

33. Hafezolghorani M., Hejazi F., Vaghei R., Jaafar M. S. B., Karimzade K. Simplified damage plasticity model for concrete. Structural Engineering International. 2017, vol. 27, no. 1, pp. 68—78. DOI: 10.2749/101686616X1081.

34. Pekau O. A., Zhang Z. X. Strain-space cracking model for concrete and its application. Computers & Structures. 1994, vol. 51, no. 2, pp. 151—162. DOI: 10.1016/0045-7949(94)90046-9.

35. Chen A. C. T., Chen W. F. Constitutive relations for concrete. Journal of the Engineering Mechanics Division. 1975, vol. 101, no. 4, pp. 465—481. DOI: 10.1061/JMCEA3.0002034.

36. Grassl P., Lundgren K., Gylltoft K. Concrete in compression: a plasticity theory with a novel hardening law. International Journal of Solids and Structures. 2002, vol. 39, no. 20, pp. 5205—5223. DOI: 10.1016/S0020-7683(02)00408-0.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.