Bibliography: 1. Xie H. Y., Sun R., Wu J. Z., Feng D. X., Gao L. K. A case study of enhanced sulfidization flotation of lead oxide ore: Influence of depressants. Minerals. 2020, vol. 10, no. 2, article 95. DOI: 10.3390/min10020095.
2. Tang H. H., Liu B. J., Li M. S., Zhang Q. C., Zhang X. X, Jiang F. Cooperative effect of sodium lauryl sulfate collector and sodium pyrophosphate depressant on the flotation separation of lead oxide minerals from hematite. International Journal of Minerals, Metallurgy & Materials. 2024, vol. 31 no. 9, pp. 1975—1984. DOI: 10.1007/s12613-023-2815-2.
3. Nayak A., Jena M. S., Mandre N. R. Beneficiation of lead-zinc ores — A review. Mineral Processing and Extractive Metallurgy Review. 2021, vol. 43 no. 5, pp. 564—583, DOI: 10.1080/08827508. 2021.1903459
4. Asadi T., Azizi A., Lee J., Jahani M. Leaching of zinc from a lead-zinc flotation tailing sample using ferric sulfate and sulfuric acid media. Journal of Environmental Chemical Engineering. 2017, vol. 5, pp. 4769—4775. DOI: 10.1016/j.jece.2017.09.005.
5. Hussaini S., Kursunoglu S., Top S., Ichlas Z. T., Kaya M. Testing of 17-different leaching agents for the recovery of zinc from a carbonate-type Pb-Zn ore flotation tailing. Minerals Engineering. 2021, vol. 168, article 106935. DOI: 10.1016/j.mineng.2021.106935.
6. Liu C., Zhang W. C., Song S. X., Li H. Q., Jiao X. K. A novel insight of the effect of sodium chloride on the sulfidization flotation of cerussite. Powder Technology. 2019, vol. 344, pp. 103—107.
7. Feng Q., Wen S., Cao Q., Deng J., Zhao W. The effect of chloride ions on the activity of cerussite surfaces. Minerals. 2016, vol. 6, no. 3, article 92. DOI: 10.3390/min6030092.
8. Telkov Sh.A., Motovilov I.Tu., Barmenshinova M. B., Abisheva, Z.S. Study of gravity-flotation concentration of lead-zinc ore at the Shalkiya deposit. Obogashchenie Rud. 2021, vol. 6, pp. 9—15. [In Russ]. DOI: 10.17580/or.2021.06.02.
9. Telkov Sh. A., Motovilov I. Yu., Barmenshinova M. B., Medyanik N. L., Daruesh G. S. Substantiation of gravity concentration to the shalkiya deposit lead-zinc ore. Journal of Mining Science. 2019, no. 3, pp. 99—105. [In Russ]. DOI: 10.15372/FTPRPI20190312.
10. Telkov Sh. A., Motovilov I. Yu., Barmenshinova M. B. Patent for utility model No. 6020.30.04.2021. [In Russ].
11. Mütevellioğlu N. A., Yekeler M. Beneficiation of oxidized lead-zinc ores by flotation using different chemicals and test conditions. Journal of Mining Science. 2019, no. 2, pp. 162—168. [In Russ]. DOI: 10.15372/FTPRPI20190218.
12. Zhao Y., H Tian, Li J., Chen S., Zhao J. Constraints on the genesis of the Laochang Pb—Zn ore, Gejiu district, Yunnan: Evidence from sulfide trace element and isotope geochemistry. Ore Geology Reviews. 2022, vol. 150. DOI: 10.1016/j.oregeorev.2022.105162.
13. Fazli S., Taghipour B., Moore F., Lentz D. R. Fluid inclusions, S isotopes, and Pb isotopes characteristics of the Kuh-e-Surmeh carbonate-hosted Zn—Pb deposit in the Zagros Fold Belt, southwest Iran: Implications for the source of metals and sulfur and MVT genetic model. Ore Geology Reviews. 2019, vol. 109, pp. 615—629. DOI: 10.1016/j.oregeorev.2019.04.006.
14. Cheng Y., Yang C., Deng M., Bai F., Chen F. Genesis of Caoziwa Pb–Zn deposit in Tengchong block, SW China: Constraints from sulfur isotopic and trace elemental compositions of sulfides. Minerals. 2024, vol. 14, no. 1, article 82. DOI: 10.3390/min14010082.
15. Antropova I. G., Gulyashinov A. N., Lamuev V. A., Paleev P. L. Patent RU 2364639-2009. Bulletin No. 23 [In Russ].
16. Antropova I. G., Gulyashinov P. A., Budaeva A. D., Dashiev I. P., Khomoksonova D. P. Processing of oxidized lead—zinc ore by co-roasting with pyrite-bearing ore. Minerals. 2024, vol. 14, article 1241. DOI: 10.3390/min14121241.
17. Yu A., Ding Z., Yuan J., Feng Q., Wen S., Bai S. Process mineralogy characteristics and flotation optimization of a low-grade oxidized lead and zinc ore from lanping mine. Minerals. 2023, vol. 13, article 1167. DOI: 10.3390/min13091167.
18. Oxide lead treatment & extraction by flotation & gravity methods. https://www.911metallurgist. com/blog/oxide-lead-ore-treatment-extraction-method/#Lead-Oxide-Gravity-Flotation-ProcessFlowsheet.
19. Jialei Li, Siyan Liu, Dianwen Liu, Ruizeng Liu, Zhicheng Liu, Xiaodong Jia, Tiancang Chang Sulfidization mechanism in the flotation of cerussite: A heterogeneous solid-liquid reaction that yields PbCO3 /PbS core-shell particles. Minerals Engineering. 2020, vol. 153, DOI: 10.1016/j.mineng.2020.106400.
20. Feng Q. C., Wen S. M., Zhao W. J., Deng J. S., Xian Y. J. Adsorption of sulfide ions on cerussite surfaces and implications for flotation. Journal of Applied Surface Science. 2016, vol. 360, pp. 365—372.
21. Wei B., Mao Y., Wang L., Shen P., Wang H., Liu D. Sources, performance and mechanisms of metal ions in the flotation process of copper, lead, and zinc ores: A Review. Minerals. 2024, vol. 14, DOI: 10.3390/min14111105.
22. Yangitilavova B. Kh., Li E. M., Motovilov I. Yu. Development of the lead cycle mode of polymetallic ore flotation using the simplex planning method. Mining Journal of Kazakhstan. 2021, no. 4, pp. 47—54. [In Russ].