Kinetics of electrode potentials of sulfide mineral electrodes in the presence of flotation modifiers

The article describes the potentiometric studies carried out with mineral electrodes of non-oxidizable sulfides—stibnite, molybdenite and galena—in comparison with pyrite, aresnopyrite and chalcopyrite in the controllable oxidation–reduction environment. Molybdenite, stibnite and arsenopyrite possess the highest crystal lattice energy as against pyrite and chalcopyrite, which points at the redox resistance of the minerals and agrees with the resultant measurements of electrode potentials. Anisotropy of electrode potentials of non-oxidizable sulfides is determined in different areas of crystal chemistry. In distilled water, stibnite {010} and molybdenite {0001} have the electrode potentials of +177.76 mV and +149.5 mV, respectively, while stibnite {101} and molybdenite {1010} have the electrode potentials of -898.27 mV and
-375.42 mV, respectively. In the pH range of 2–12, the electrode potentials of stibnite {010} and molybdenite {0001} remain positive up to pH 10 and become negative when pH >11, and the electrode potentials of stibnite {101} and molybdenite {1010} remain negative within the whole test range of pH. The negative electrode potential of galena shifts to the oxidation area at pH 2–7 and then displaces in the reduction area at pH 8–12. As against the non-oxidizable sulfides, the electrode potentials of pyrite, arsenopyrite and chalcopyrite shift to the negative area when pH> 8. The change  in the electrode potentials of the mineral electrodes is determined in case of addition of flotation modifiers in distilled water (pHinit. 5.5). The rate of change in the electrode potential of sulfides depends on the alkalinity of the environment.

 

Keywords: stibnite, molybdenite, galena, pyrite, arsenopyrite, chalcopyrite, cleavage, structure, sodium sulfide, sodium thiosulfate, hydrogen peroxide, surface properties, oxidation, reduction, electrode potential.
For citation:

Kayumov А. А., Ignatkina V. А., Ergesheva N. D. Kinetics of electrode potentials of sulfide mineral electrodes in the presence of flotation modifiers. MIAB. Mining Inf. Anal. Bull. 2023;(10):89-103. [In Russ]. DOI: 10.25018/0236_1493_2023_10_0_89.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 22-27-00102.

Issue number: 10
Year: 2023
Page number: 89-103
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2023_10_0_89
Article receipt date: 06.07.2023
Date of review receipt: 25.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.09.2023
About authors:

А.А. Kayumov1, Cand. Sci. (Eng.), Leading Engineer, e-mail: maliaby_92@mail.ru, ORCID ID: 0000-0003-0502-6595,
V.А. Ignatkina1, Dr. Sci. (Eng.), Professor, e-mail: woda@mail.ru, ORCID ID: 0000-0003-2552-206X, 
N.D. Ergesheva1, Student, e-mail: nazymarzu.zharolla@mail.ru,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

А.А. Kayumov, e-mail: maliaby_92@mail.ru.

Bibliography:

1. Madzokere Tatenda Crispen, Nheta Willie, Gumbochuma Sheunopa Advances of nanotechnology applications in mineral froth flotation technology. Application of nanotechnology in mining processes: Beneficiation and sustainability. Chapter 8. 2022, pp. 289—326. DOI: 10.1002/9781119865360.ch8.

2. Chanturia V. A., Kozlov P. A. Modern problems of complex processing of refractory ores and technogenic raw materials. Materialy Mezhdunarodnoy nauchnoy konferentsii «Plaksinskie chteniya» [Materials of the International Scientific Conference «Plaksin readings»], Krasnoyarsk, 2017, pp. 3—6. [In Russ].

3. Chanturiya V. A., Bocharov V. A. Modern state and basic ways of technology development for complex processing of non-ferrous mineral raw materials. Tsvetnye Metally. 2016, no. 11, pp. 11—18. [In Russ]. DOI: 10.17580/tsm.2016.11.01.

4. Metin Can N., Çağrı Başaran Effects of different grinding media and milling conditions on the flotation performance of a copper-pyrite ore. Minerals. 2023, vol. 13, no. 1, article 85. DOI: 10.3390/min13010085.

5. Morozov Yu. P., Intogarova T. I., Valieva O. S., Donets Lu. O. Flotation classification in closed circuit grinding as a way of reducing sulfide ore overgrinding. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2021, no. 1, pp. 85—96. [In Russ]. DOI: 10.21440/0536-10282021-1-85-96.

6. Plaksin I. N., Shafeev R. Sh. Influence of electrochemical inhomogeneity of the surface of sulfide minerals on xanthate distribution under flotation conditions. Doklady Akademii nauk SSSR. 1958, vol. 121, no. 1, pp. 145—148. [In Russ].

7. Castro S., Lopez-Valdivieso A., Laskowski J. S. Review of the flotation of molybdenite. Part I: Surface properties and floatability. International Journal of Mineral Proccesing. 2016, vol. 148, pp. 48—58. DOI: 10.1016/j.minpro.2016.01.003.

8. Xiaoqin Tang, Ye Chen A review of flotation and selective separation of pyrrhotite. A perspective from crystal structures. International Journal of Mining Science and Technology. 2022, vol. 32, no. 4, pp. 847—863. DOI: 10.1016/j.ijmst.2022.06.001.

9. Yi G., Macha E., Van J. Dyke, Ed R. Macha, McKay T., Free M. L. Recent progress on research of molybdenite flotation. A review. Advances in Colloid and Interface Science. 2021, vol. 295, no. 4, article 102466. DOI: 10.1016/j.cis.2021.102466.

10. Chimonyo W., Corin K. C., Wiese J. G., O’Connor C. T. Redox potential control during flotation of a sulphide mineral ore. Minerals Engineering. 2017, vol. 110, pp. 57—64. DOI: 10.1016/j.mineng.2017.04.011.

11. Ignatkina V. A., Aksenova D. D., Kayumov A. A. et al. Hydrogen peroxide in reagent regimes in copper sulphide ore flotation. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2022, no. 1, pp. 139—152. [In Russ]. DOI: 10.15372/FTPRPI20220115.

12. Chen Y., Chen X., Peng Y. The effect of sodium hydrosulfide on molybdenite flotation as a depressant of copper sulfides. Minerals Engineering. 2020, vol. 148, no. 15, article 106203. DOI: 10.1016/j.mineng.2020.106203.

13. Vazife J., Pourghahramani P., Asqarian H., Bagherian A. Effects of pH and pulp potential on selective separation of Molybdenite from the Sungun Mine Cu-Mo concentrate. International Journal of Mining and Geo-Engineering. 2017, vol. 51, no. 2, pp. 147—150. DOI: 10.22059/ IJMGE.2017.220005.594638.

14. Solozhenkin P. M., Zinchenko Z. A. Obogashchenie sur'myanykh rud [Enrichment of antimony ores], Moscow, Nauka, 1985, 180 p.

15. Qian Zhang, Shuming Wen, Qicheng Feng, Genping Huang Interaction mechanism of lead ions with stibnite surfaces and enhancement of xanthate adsorption. Journal of Molecular Liquids. 2021, vol. 331, article 115802. DOI: 10.1016/j.molliq.2021.115802.

16. Ignatkina V. A., Kayumov A. A., Ergesheva N. D., Chernova P. A. Floatability of lowoxidizable molybdenum and antimony sulfides in controlled oxidation-reduction conditions. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2023, no. 1, pp. 145—160. [In Russ]. DOI: 10.15372/FTPRPI20230114.

17. Solozhenkin P. M. Interactions of antimony minerals with lead cations, sulfhydryl reagents based on molecular modeling. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya. Materialy XXV Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii [Scientific bases and practice of processing ores and technogenic raw materials. Materials of the XXV International Scientific and Technical Conference], Ekaterinburg, Izd-vo «Fort Dialog-Iset'», 2020, pp. 74—77. [In Russ].

18. Segura-Salazar J., Brito-Parada P. R. Stibnite froth flotation. A critical review. Minerals Engineering. 2021, vol. 163, article 106713. DOI: 10.1016/j.mineng. 2020.106713.

19. Zhengyao Li, Yuanyuan Wang, Muxin Jia, Ligang Wen, Xuewen Wang, Jinzhi Wei Effect and mechanism of depressant disodium carboxymethyl trithiocarbonate on flotation separation of stibnite and pyrite. Mining Metallurgy & Exploration. 2022, vol. 39, pp. 1267—1275. DOI: 10.1007/s42461-022-00582-4.

20. Kayumov A. A. Povyshenie effektivnosti flotatsii tennantita iz kolchedannoy mednotsinkovoy rudy na osnove selektivnykh reagentnykh rezhimov flotatsii [Improving the efficiency of tennantite flotation from pyrite copper-zinc ore based on selective reagent regime of flotation], Candidate’s thesis, Moscow, NITU «MISiS», 2019, 27 p.

21. Ignatkina V. A., Kayumov A. A., Ergesheva N. D. Floatability and calculated reactivity of gold and sulfide minerals. Izvestiya vuzov. Tsvetnaya metallurgiya. 2022, vol. 28, no. 4, pp. 4—14. [In Russ]. DOI: 10.17073/0021-3438-2022-4-4-14.

22. Chanturiya V. A., Krasavtseva E. A., Makarov D. V. Electrochemistry of sulfides: Process and environmental aspects. Sustainability. 2022, vol. 14, article 11285. DOI: 10.3390/su141811285.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.