Study of magnetic separation in ascending air flow of Сhurbash slurry tailings

At present, most mining enterprises of ferrous metallurgy operate in conditions of depletion of reserves of iron ores. At the same time, as a result of enrichment of iron ore raw materials by enrichment plants a large amount of waste, the accumulation of which leads to the formation of huge tailings ponds. As a result of almost three centuries of activity of Vysokogorsky iron mine, and later the mining and processing plant with the same name, the volume of open pit excavations amounted to 182.3 million m3 in the area of 384.2 ha. In addition, vast territories, allocated for tailings, are withdrawn from land use. However, the iron content in the tailings is high enough and suitable for post-enrichment, which is explained by a number of factors: imperfections in the existing enrichment technology, emergency equipment shutdowns, imperfect or lack of schemes for utilization and capturing of slimes and promiscuous products. The possibility of enrichment of the 0.1−0.05 mm size classes of the artificial mixture of magnetite (20%) with quartz (80%) has been studied. Magnetic concentrate with the mass fraction of iron from 51.85 to 78.31% and recovery from 31.11 to 97.99% was obtained. Optimal results were obtained at 60-minute pretreatment roasting with the temperature of 1150 ºC and in the ascending air flow separator with dry magnetic separation of tailings from the slurry. A magnetic product with a mass fraction of iron in it of 76.14, with an iron extraction of 50.2% was obtained.

Keywords: dry enrichment, magnetic separation, pneumatic separation, iron-containing tailings, enrichment of small size classes, new processes and apparatuses, enrichment technology, technological indicators. mineral dressing.
For citation:

Morozov Y. P., Zavyalov S. S., Mamonov R. S. Study of magnetic separation in ascending air flow of Сhurbash slurry tailings. MIAB. Mining Inf. Anal. Bull. 2023;(12-1):82—92. [In Russ]. DOI: 10.25018/0236_1493_2023_121_0_82.

Acknowledgements:
Issue number: 12
Year: 2023
Page number: 82-92
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2023_121_0_82
Article receipt date: 15.05.2023
Date of review receipt: 02.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.11.2023
About authors:

Morozov Yu. P., Dr. Sci. (Eng.), professor, Federal State Budgetary Educational Institution of Higher Education “Ural State Mining University”, Russia, 620144, Yekaterinburg, st. Kuibysheva, 30, e-mail: tails2002@inbox.ru, ORCIDA ID: 0000-0003-0554-5176; Zavyalov S. S., Engineer-researcher, Junior Research Associate at NILRNZiTO, Federal State Budgetary Educational Institution of Higher Professional Education «Ural State Mining University», 30 Kuibyshev St., Ekaterinburg, Russia, 620144, e-mail: Sergey. Zavialov@m.ursmu.ru, ORCID ID: 0000-0002-2947-0458;
Mamonov R. S., еngineer, Department mineral dressing, «Ural State Mining University», 30 Kuibyshev St., Ekaterinburg, Russia, 620144, e-mail: Mamonoff_npa@mail.ru, ORCID ID: 0000-0002-9371-1762

 

For contacts:

Zavyalov S. S., e-mail: Sergey.Zavialov@m.ursmu.ru.

Bibliography:

1. Tang Z., Gao P., Sun Y., Han Y., Li E., Chen J., Zhang Y. Studies on the fluidization performance of a novel fluidized bed reactor for iron ore suspension roasting. Powder Technology. 2020, pp. 649–657. DOI: 10.1016/j.powtec.2019.09.092.

2. Xudong Li, Yubua Wang, Dongfang Lu, Xiayu Zheng. Influence of Separation Angle on the Dry Pneumatic Magnetic Separation. Minerals. 2022, vol. 12(10), p. 1192. DOI: 10.3390/min12101192.

3. Fedorov S. A., Yakimov T. S., Kalgin V. Yu. Noble metals in metasomatites of the Kirchenovskoye deposit (East Transbaikalia). IOP Conference Series: Earth and Environmental Science. 2021, no. 666 (4), pp. 1–6. DOI: 10.1088/1755−1315/666/4/042016.

4. Amdur A. M., Pavlov V. V., Fedorov S. A. Flotation of dispersed gold droplets and high-grade matte in melts. Mining Information and Analytical Bulletin. 2020, no. 3−1, pp. 411–421. [In Russ]. DOI: 10.25018/0236-1493-2020-31−0-411−421.

5. Kamil Stan´czyk, Andrzej Bajerski, Marian J. Łaczny. Negative-pressure pneumatic separator: a new solution for hardcoal. International Journal of Coal Science & Technology. 2021, vol. 8(1), pp. 103–123. https://doi.org/10.1007/s40789−020−00345-w.

6. Serhii Kharchenko, Yurii Borshch, Stepan Kovalyshyn, Mykhailo Piven, Magomed Abduev, Anna Miernik, Ernest Popardowski, Paweł Kiełbasa. Modeling of Aerodynamic Separation of Preliminarily Stratified Grain Mixture in Vertical Pneumatic Separation Duct. Special Issue “Applied Electromagnetism in Modern Engineering and Medical Technologies» Appl. Sci. 2021, vol. 11(10), 4383; https://doi.org/10.3390/app11104383.

7. Zavyalov S. S., Mamonov R. S. Combined technology of dry pre-enrichment of goldbearing ore. MIAB. Mining Inf. Anal. Bull. 2021, no. 11−1. pp. 338–345. [In Russ]. DOI: 10. 25018/0236_1493_2021_111_0_338.

8. Chalavadi G., Das A. Study of the mechanism of fine coal beneficiation in air table. Fuel. 2015, vol. 154, no. 15, pp. 207–216. https://doi.org/10.1016/j.fuel.2015.03.063.

9. Fu Z., Zhu J., Barghi S., Zhao Y., Luo Z., Duan Ch. Dry coal beneficiation by the semiindustrial air dense medium fluidized bed with binary mixtures of magnetite and fine coal particles. Fuel. 2019, vol. 243, no. 1, pp. 509–518. https://doi.org/10.1016/j.fuel.2019.01.140.

10. Mijał W., Tora B. Development of dry coal gravity separation techniques. IOP Conference Series: Materials Science and Engineering. Fuel. 2018, vol. 52, no. 17, 427012003. http://dx.doi.org/10.1088/1757−899X/427/1/012003.

11. Sarkar B., Das A., Mehrotra S. P. Study of separation features in floatex density separator for cleaning fine coal. Int J Miner Process. 2008, vol. 86(1–4), pp. 40–49. https:// doi.org/10.1016/j.minpro.2007.10.002.

12. Yang Y., Ge L., He Y., Xie W., Ge Z. Mechanism and fine coal beneficiation of a pulsating airflow classifier // International Journal of Coal Preparation and Utilization Published. 2017, pp. 20–32. https://doi.org/10.1080/19392699.2017.1288622.

13. Lebedev I. F. Technological studies of lead ores by pneumoseparation. Proceedings of XXVII International Scientific and Technical Conference. “Scientific bases and practice of processing of ores and technogenic raw materials” 07−08 April 2022 Ekaterinburg. 2022, pp. 228–233. [In Russ].

14. Merinov N. F. Features of pneumatic methods of enrichment. Izvestiya vuzov. Mining Journal. 2011, no. 4, pp. 99–109. [In Russ].

15. Ovchinnikova T. Y., Efremova T. A., Tsypin E. F. On the lower limits of the size classes at the preliminary concentration of ore using X-ray fluorescent separation. MIAB. Mining Inf. Anal. Bull. 2021, no. 11−1, pp. 328–337. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_328.

16. Sobolev A. A., Melnikov H. A., Tyutyunnik L. O. Movement of particles in an air stream. Vector of Science TSU (Togliatti State University). 2011, no. 3 (17), pp. 82–86. [In Russ].

17. Kotov Boris, Stepanenko Sergey, Grushetsky Sergey, Grishchenko Vladimir. Modeling the process of grain separation by density in a combined vibro-pneumatic and airgravity unit. Engineering and Technology. 2022, no. 3. pp. 106–116. DOI: 10.37128/23068744-2022-3.

18. Bauman A. V., Stepanenko A. I., Stepanenko A. A. Practical results and prospects of dry enrichment of ores and nonmetallic materials by pneumatic separation. Mining Journal. 2020, no. 3, pp. 40–44. [In Russ]. DOI: 10.17580/gzh.2020.03.07.

19. Xudong Li, Yuhua Wang, Dongfang Lu, Xuesong Gao. Optimization of Airflow Field for Pneumatic Drum Magnetic Separator to Improve the Separation Efficiency. Minerals. 2021, vol. 11(11), 1228. DOI:10.3390/min11111228.

20. Tsypin E. F., Efremova T. A., Ovchinnikova T. Yu., Elizarov D. B. Effect of fractionation by size on the efficiency of X-ray radiometric separation of polymetallic ore. Ore Enrichment. 2018, no. 3, pp. 14–19.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.