Interlaminar deformations during top coal caving

Authors: Aksenov Z.V.

This study focuses on determination and analysis of the parameters and features of manmade acoustic signals in top coal caving with a view to predicting hazardous dynamic events. The prediction results of top coal caving based on the analytical calculations using the data on the structure and strength characteristics of rocks above coal seams Polenovsky and Boldyrevsky in Kirov mine and seam 52 in Yalevsky mine are presented. The research aim was processing and analysis of information provided by the automation system of acoustic rock mass control (SARMC) and the hazardous dynamic event prediction for the purpose of stress–strain monitoring of rock mass. Dynamics of weakened interfaces of layers and the face rock mass condition were assessed using the manmade acoustic signal parameters. The features of the manmade acoustic signals in the layered medium are described, and the influence of the face advance on variability of the signal parameters is discussed. Using the analysis and interpretation data, the detailed patterns of relative stresses in longwall sites of the above-listed mines during top coal caving are obtained.

Keywords: manmade acoustic signal, mining safety, SARMC, weakened interfaces, relative stress dynamics, coal seam, rock mass stress–strain behavior, local rock relaxation, caving square zone.
For citation:

Aksenov Z. V. Interlaminar deformations during top coal caving. MIAB. Mining Inf. Anal. Bull. 2021;(9):23-35. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_23.

Acknowledgements:
Issue number: 9
Year: 2021
Page number: 23-35
ISBN: 0236-1493
UDK: 622.831.322
DOI: 10.25018/0236_1493_2021_9_0_23
Article receipt date: 12.05.2021
Date of review receipt: 23.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

Z.V. Aksenov, Graduate Student, e-mail: aksenov.zakhar@yandex.ru, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:
Bibliography:

1. Kosterenko V. N., Vorob'eva O. V., Artem'ev V. B. Obrushenie gornykh vyrabotok [Caving of underground openings], Moscow, Izd-vo «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2015, 528 p.

2. Mirer S. V., KHmara O. I., Maslenshchikov E. V. O kontrole vybrosoopasnosti zaboev po spektral'nym kharakteristikam akusticheskikh signalov. Voprosy predotvrashcheniya vnezapnykh vybrosov. Nauchnoe soobshchenie IGD im. A.A. Skochinskogo [Outburst hazard control in faces by spectrum characteristics of acoustic signals. Prevention of Outbursts. Skochinsky Institute of Mining Report], 1987, pp. 52—61. [In Russ].

3. Shkuratnik V. L., Kravchenko O. S., Filimonov Y. L. Acoustic emission of rock salt at different uniaxial strain rates and under temperature. Journal of Applied Mechanics and Technical Physics. 2020, vol. 61, no. 3, rp. 479–485.

4. Glikman A. G. Polya uprugikh kolebaniy v gornykh porodakh [Fields of elastic vibrations in rocks], Leningrad, LGI, 1985, 65 p. Deposited manuscript, VINITI, no. 188 MG-D85. [In Russ].

5. Filimonov Y., Lavrov A., Shkuratnik V. Acoustic emission in rock salt: effect of loading rate. Strain. 2002, vol. 38, no. 4, rp. 157–159.

6. Glikman A. G. Fizika i praktika spektral'noy seysmorazvedki [Physics and practice of spectrum seismic], Geokniga, 2002, 141 p.

7. Skuratnik V. L., Nikolenko P. V., Anufrenkova P. S. About features of ultrasonic measurements in coal samples using shear elastic waves. MIAB. Mining Inf. Anal. Bull. 2020, no. 4, pp. 117—126. [In Russ]. DOI: 10.25018/0236-1493-2020-4-0-117-126.

8. Nikolenko P. V., Nabatov V. V. Interference protection in geoacoustic control of critical stresses in rocks. Gornyi Zhurnal. 2015, no. 9, pp. 33—36. [In Russ]. DOI: 10.17580/ gzh.2015.09.06.

9. Bryukhanov A. M., Agafonov A. V., Rubinskiy A. A., Kolchin G. I. Akusticheskiy kontrol' vybrosoopasnosti. Rassledovanie i predotvrashchenie avariy na ugol'nykh shakhtakh [Acoustic control of outburst hazard. Investigation and prevention of accidents in coal mines], vol. 3. Donetsk, Veber, 2007, 692 p.

10. Alkana H., Cinarb Y., Pusch G. Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests. International Journal of Rock Mechanics and Mining Sciences. 2007, vol. 44, no. 1, pp. 108—119.

11. Worden K., Spencer A. B., Packo P., Staszewski W. J., Uhl T., Pierce S. G. Acoustic emission source characterisation using evolutionary optimization. Strain. 2018, vol. 54, no. 4. DOI: 10.1111/str.12272.

12. Galchenko Yu. P., Eremenko V. A., Kosyreva M. A., Vysotin N. G. Features of secondary stress field formation under anthropogenic change in subsoil during underground mineral mining. Eurasian Mining. 2020, no. 1, pp. 9–13. DOI: 10.17580/em.2020.01.02.

13. Kopylov K. N., Smirnov O. V., Kulik A. I., Pal'tsev A. I. Automation system of acoustic rock mass control (SARMC) and hazardous dynamic event prediction. Occupational Safety in Industry. 2015, no. 8, pp. 32—37. [In Russ].

14. Kosterenko V. N., Smirnov R. O., Aksenov Z. V. Gas emission dynamics in longwalls. Russian Mining Industry. 2019, no. 2 (144), pp. 52—58. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.