Structural investigation of waste piles by radiolocation

Any industry produces waste which has adverse environmental effect. Processing, recycling or disposal of waste requires reliable information on volume and structure of waste piles. This article discusses capabilities of radiolocation in investigation of waste piles. The radiolocation studies of waste piles in the permafrost zone are presented. The geophysical surveys of mining waste piles and municipal waste dumps were performed in winter, after complete freezing of waste. In summer, submerged dredging waste was surveyed from water surface. The wave patterns were analyzed using radarograms of gold placer dumps. From the analysis, the interpretation signs of morphostructural heterogeneities in the dump structure were developed to detect interfaces of different waste layers, or identify pockets of metals, boulders and water invasion (higher moisture content). Radiolocation of dredging waste distinguished between the dredge and sluice tailings, and traced the boundary of parent rocks at the bottom of the tailings pond. At the municipal waste dump, the wave image of polluted soil was identified, the pollution zones on the radarograms were delineated, and the map of the contour lines was plotted to analyze their areal extent. To sum up, it is possible to detect interfaces of layers inside a waste pile based on certain properties and to perform high-accurate spatial analysis of waste based on classification of wave patterns.

Keywords: radiolocation, waste pile structure, dredge and sluice tailings, municipal waste dumps, industrial pollution, higher moisture content areas, radarogram, interpretation signs, wave image, wave pattern.
For citation:

Fedorova L. L., Kulyandin G. A., Poiseeva S. I. Structural investigation of waste piles by radiolocation. MIAB. Mining Inf. Anal. Bull. 2021;(12—1):243—254. [In Russ]. DOI: 10.25 018/0236_1493_2021_121_0_243.

Acknowledgements:
Issue number: 12
Year: 2021
Page number: 243-254
ISBN: 0236-1493
UDK: 550.837.76:622.7
DOI: 10.25018/0236_1493_2021_121_0_243
Article receipt date: 18.07.2021
Date of review receipt: 19.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

Fedorova L. L.2, Cand. Sci. (Eng.), associate professor, leading researcher, lar-fed-90@rambler.ru;
Kulyandin G. A.1, Researcher of the Laboratory, kgavrilu@yandex.ru;
Poiseeva S. I.2, Cand. Sci. (Вiol.), associate professor, poisargy@mail.ru;
1 Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, Republic of Sakha (Yakutia), Russia, e-mail: igds@igds.ysn.ru;
2 M. K. Ammosov North-Eastern Federal University, Yakutsk, Republic of Sakha (Yakutia), Russia.

 

For contacts:
Bibliography:

1. Otchet publichnogo akcionernogo obshchestva AK «ALROSA» (AK «ALROSA» (PAO), ALROSA, Kompaniya, Obshchestvo) za 2019 g. [Report of Public Joint Stock Company PJSC ALROSA (PJSC ALROSA, ALROSA, Company, Company) for 2019]. URL: http://www. alrosa.ru/wp-content/uploads/2020/06/АЛРОСА-Годовой-отчет-2019.pdf [In Russ]

2. Harry M. J. Ground penetrating radar: theory and applications, Elsevier. 2009, 524 p.

3. Finkel’shtein, M. I., Kutev V. A., Zolotarev V. P. Primenenie radiolokacionnogo podpoverhnostnogo zondirovaniya v inzhenernoj geologii [Applications of subsurface radar in geology]. Moscow, Nedra. 1986, 128 p. [In Russ]

4. Kl. Dimitriadis, V. Perez-Gracia Applications of GPR in association with other nondestructive testing methods in building assessment and in geological/geotechnical tasks. Civil Engineering Applications of Ground Penetrating Radar (Proceedings First Action’s General Meeting Rome) COST ACTION TU1208. Rome, 2013. pp.183—190.

5. Borella J, Quigley C., Riley M., Trutner S., Jol H., Borella M., Hampton S., Gravley D. Influence of anthropogenic landscape modifications and infrastructure on the geological characteristics of liquefaction. Anthropocene, 2020, V.29, 16 p.

6. Sudakova M.S, Sadurtdinov M. R., Tsarov A. M., Skvortsov A. G., Malkova G. V. Opyt ispol’zovaniya georadiolokatsii pri geokriologicheskikh issledovaniyakh. Geoyevraziya 2018. Sovremennyye metody izucheniya i osvoyeniya nedr Yevrazii, 2018 , pp. 680—684 [In Russ]

7. Sudakova M. S., Vladov M. L. Modern directions of ground-penetrating radar. Vestnik Moskovskogo universiteta. Seriya 4: Geologiya, 2018. no.2, pp.3—12. [In Russ]

8. Semejkin N. P., Pomozov V. V., Ekvist B. V., Monahov V. V. Geophysical instruments. MIAB. Mining Inf. Anal. Bull. 2008. no. 12. pp.203–211. [In Russ]

9. Vladov M. L., Zolotarev V. P., Starovojtov A. V. Metodicheskoe rukovodstvo po provedeniyu georadiolokacionnyh issledovanij [Methodological guide for conducting georadar research]. М., 1997. P. 75. [In Russ]

10. Omel’yanenko A. V., Fedorova L. L. Georadiolokacionnye issledovaniya mnogoletnemerzlyh porod [GPR studies of permafrost]. Yakutsk: YANC SO RAN, 2006. 136 p. [In Russ]

11. Lejzerowicz A., Kowalczyk S., Wysocka A. Application of ground penetrating radar method combined with sedimentological analyses in studies of glaciogenic sediments in central Poland. Studia Quaternaria, 2018, vol. 35, no. 2, pp. 103–119.

12. Rodionov A. I., Ryazancev P. A. Estimation of parameters of GPR signal in conditions of physical modeling of sand and gravel mixture. Geofizika, 2017. no. 6, pp.57–64. [In Russ]

13. Lalomov D. A., Glazunov V. V. Determination of electrophysical parameters of a sandy-clay section with the integrated use of ground penetrating radar and electrotomography. Inzhenernyye izyskaniya, 2015, no. 5—6, pp. 58–69 [In Russ]

14. Fedorova L. L., Savvin D. V., Fedorov M. P., Kulyandin G. A., Struchkov S. A. GPR monitoring of the state of soils of road structures operated in permafrost conditions. Dorogi i mosty, 2017. 38/2 , pp. 189–206. [In Russ]

15. Bryakin I. V. Subsurface sounding systems for shallow geophysics. Problemy avtomatiki i upravleniya, 2015. 1(28). pp. 83—93. [In Russ]

16. Fomenko N. E., Kapustin V. V., Gaponov D. A., Fomenko L. N. Investigation of technogenically fixed soils of the foundations by radar and seismic methods in the conditions of a long-term exploited cultural heritage site. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov, 2018, V. 329 (8), pp. 16—29. [In Russ]

17. Kulik K. N., Semenenko S. YA., Marchenko S. S., Ar’kov D. P., Koshelev A. V., Morozova N. V. Possibilities of GPR inspection of the state of an unauthorized household waste landfill. Ekologiya i stroitel’stvo, 2019 no. 4. pp. 4—13 [In Russ]

18. Kulyandin, G. A. Vyyavlenie tekhnogennogo zagryazneniya gruntovoj sredy metodom georadiolokacii (na primere uchastka stroitel’noj ploshchadki) [Identification of technogenic pollution of the soil environment by GPR (on the example of a construction site)] «Geologiya i mineral’no-syr’evye resursy Severo-Vostoka Rossii» : materialy VIII Vserossijskoj nauchnoprakticheskoj konferencii, g. YAkutsk, 18—20 apr. 2018 g.Yakutsk, 2018. 2. pp. 224–227. [In Russ]

19. Nabatov V. V., Gajsin R. M. GPR detection of parameters of reinforcement of building structures and subway tunnels. range of tasks and interference factors. MIAB. Mining Inf. Anal. Bull. 2014, no. 12, pp. 168–175. [In Russ]

20. Stadler S., Igel J. A numerical study on using guided GPR waves along metallic cylinders in boreholes for permittivity sounding. 2018 17th International Conference on Ground Penetrating Radar (GPR), 2018. pp. 543—548.

21. Klewe T., Strangfeld C., Kruschwitz S. Review of moisture measurements in civil engineering with ground penetrating radar Applied methods and signal features. Construction and Building Materials. Volume 278.2021. 9 p.

22. Igel J., Anschütz H., Schmalholz J., Wilhelm H., Breh W., Hötzl H., Hübner C. Methods for Determining Soil Moisture with Ground Penetrating Radar (GPR). Field Screening Europe– 2001. 303—308 pp.

23. Brichova S. S., Matasov V. M., Shilov P. M. Georadar in geoecological studies during artificial watering of peatlands. Geoekologiya. inzhenernaya geologiya, gidrogeologiya, geokriologiya, 2017, no. 3, pp. 76 –83[In Russ]

24. Bricheva S. S., Stanilovskaya Yu.V. Izuchenie «skrytyh» povtorno-zhil’nyh l’dov v CHarskoj kotlovine (Zabajkal’skij kraj, Rossiya) [Study of “hidden” ice wedges in the Charskaya depression (Trans-Baikal Territory, Russia)]. EAGE Conference & ExhibitionInzhenernaya geofizika, 2017. 4 p. [In Russ]

25. Sahoo H., Gandre D., Das P., Karim M., Bhuyan G. Geochemical mapping of heavy metals around Sukinda–Bhuban area in Jajpur and Dhenkanal districts of Odisha, India. Environmental Earth Sciences. no. 34. 17 p. DOI: 10.1007/s12665-017-7208-2.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.