Study of porosity of sedimentary rock samples by nuclear magnetic resonance and laser-ultrasound diagnostics

The paper describes a study of sedimentary rock samples from an oil and gas field of the Timan-Pechora Basin Province. Petrographic analysis of the samples was conducted by using a scanning electron microscope operating in an optical image mode, the geometry of surface pores characterized. The mineral composition was represented by secondary dolomite and secondary calcareous dolomite. Pores 1.5 to 35 µm in size and caverns 43 to 1750 µm long were observed on the surface of the samples. The open porosity of the samples was estimated by using the hydrostatic weighing method, ranging from 9.5 to 13.40%. The total porosity was determined by using nuclear magnetic resonance (NMR) and laser-ultrasound diagnostics. A GeoSpec+ 2/75 analyzer was used to measure the transverse relaxation time so as to estimate the total porosity. The longitudinal wave velocity in a non-porous material with the same mineral composition was calculated and then the total porosity was estimated. It is found that the total porosity determined by both methods is on average 1% higher than the open porosity. The difference in the total porosity measured by the two methods is no more than 0.2–0.4%.

Keywords: porosity, dolomite, petrophysical properties, nuclear magnetic resonance, transverse relaxation time, laser-ultrasound diagnostics, wave velocity, scanning electron microscopy.
For citation:

Cherepetskaya E. B., Zalevskii Ia. O. Study of porosity of sedimentary rock samples by nuclear magnetic resonance and laserultrasound diagnostics. MIAB. Mining Inf. Anal. Bull. 2023;(8):63-71. [In Russ]. DOI: 10.25018/0236_1493_2023_8_0_63.

Acknowledgements:
Issue number: 8
Year: 2023
Page number: 63-71
ISBN: 0236-1493
UDK: 550.84.02
DOI: 10.25018/0236_1493_2023_8_0_63
Article receipt date: 17.05.2023
Date of review receipt: 09.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.07.2023
About authors:

E.B. Cherepetskaya1, Dr. Sci. (Eng.), Professor, e-mail: echerepetskaya@mail.ru,
Ia.O. Zalevskii1, Student, e-mail: yzalevskii@gmail.com,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

Ia.O. Zalevskii, e-mail: yzalevskii@gmail.com.

Bibliography:

1. Coates G. R., Xiao L., Prammer M. G. NMR logging: principles and applications. Houston: Haliburton Energy Services, 1999, 234 p.

2. Dunn K. J., Bergman D. J., LaTorraca G. A. Nuclear magnetic resonance: Petrophysical and logging applications. Elsevier, 2002, 293 p.

3. Kenyon W. E. Petrophysical principles of applications of NMR logging. The Log Analyst, 1997, vol. 38, no. 02.

4. Kolbikova E. S., Machukaev D. S., Buchinskiy S. V. Petrophysical clustering of carbonates by complex analysis of a wide range of geological and geophysical data to clarify the reservoir filtration properties. PROneft. Professionally about Oil. 2023, vol. 8, no. 1, pp. 39—47. [In Russ]. DOI: 10.51890/2587-7399-2023-8-1-39-47.

5. Belyakov Е. О. Specific features of the probability petrophysical estimation of rock formations using the approaches of the concept of porous space connectedness. PROneft. Professionally about Oil. 2021, vol. 6, no. 3, pp. 12—22. [In Russ]. DOI: 10.51890/2587-7399-2021-6-312-22.

6. Ellis D. V., Singer J. M. Well logging for earth scientists. Springer, 2007, 692 p.

7. Mitchell J. Industrial applications of magnetic resonance diffusion and relaxation time measurements. Diffusion NMR of confined systems: fluid transport in porous solids and heterogeneous materials (New Developments in NMR, vol. 9), chapter 11, 2016, pp. 353—389. DOI: 10.1039/9781782623779-00353. :

8. Song Y. Q., Kausik R. NMR application in unconventional shale reservoirs. A new porous media research frontier. Progress in Nuclear Magnetic Resonance Spectroscopy. 2019, vol. 112– 113, pp. 17—33. DOI: 10.1016/j.pnmrs.2019.03.002.

9. Kleinberg R. L., Kenyon W. E., Mitra P. P. Mechanism of NMR relaxation of fluids in rock. Journal of Magnetic Resonance Series A. 1994, vol. 108, no. 2, pp. 206—214. DOI: 10.1006/ jmra.1994.1112.

10. Mai A., Kantzas A. Porosity distributions in carbonate reservoirs using low-field NMR. Journal of Canadian Petroleum Technology. 2007, vol. 46, no. 7. DOI: 10.2118/07-07-02.

11. Toumelin E., Torres-Verdin C., Chen S., Fischer D. M. Analysis of NMR diffusion coupling effects in two-phase carbonate rocks: comparison of measurements with Monte Carlo simulations. SPWLA 43rd Annual logging symposium. 2002, Paper Number: SPWLA-2002-JJJ.

12. Herlinger R., Dos Santos B. C. C. The impact of pore type on NMR T2 and MICP in bioclastic carbonate reservoirs. SPWLA 59th annual logging symposium. 2018, Paper Number: SPWLA-2018-GGG.

13. Al-Yaseri A. Z., Lebedev M., Vogt S. J., Johns M. L., Barifcani A., Iglauer S. Pore-scale analysis of formation damage in Bentheimer sandstone with in-situ NMR and micro-computed tomography experiments. Journal of Petroleum Science and Engineering. 2015, vol. 129, pp. 48—57. DOI: 10.1016/j.petrol.2015.01.018.

14. Elsayed M., Isah A., Hiba M., Hassan A., Al-Garadi K., Mahmoud A., El-Husseiny A., Radwan A. E. A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: laboratory and field-scale measurements. Journal of Petroleum Exploration and Production Technology. 2022, vol. 12, pp. 2747—2784. DOI: 10.1007/s13202-022-01476-3.

15. Lawal L. O., Adebayo A. R., Mahmoud M., Dia B. M., Sultan A. S. A novel NMR surface relaxivity measurements on rock cuttings for conventional and unconventional reservoirs. International Journal of Coal Geology. 2020, vol. 231, article 103605. DOI: 10.1016/j. coal.2020.103605.

16. Valori A., Nicot B. A review of 60 years of NMR wettability. Petrophysics. 2019, vol. 60, no. 02, pp. 255—263. DOI: 10.30632/PJV60N2-2019a3.

17. Shibaev I. A., Morozov D. V., Dudchenko O. L., Pavlov I. A. Estimation of local elastic moduli of carbon-containing materials by laser ultrasound. Key Engineering Materials. 2018, vol. 769, pp. 96—101. DOI: 10.4028/www.scientific.net/KEM.769.96.

18. Ivanov P. N., Bezrukov V. I. Experimental study of elastic properties of coals of various degrees of tectonic disturbance by laser-ultrasonic spectroscopy. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 26—40. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_26.

19. Galunin A. A., Gapeev A. A., Pospichal V. Estimation of the dependence of the dynamic modules of elasticity on the porosity of limestone samples by the method of pulse diagnostics. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 98—107. [In Russ]. DOI: 10.25018/0236_14 93_2021_41_0_98.

20. Ivanov P. N., Blokhin D. I., Zakorshmennyy I. M. Experimental study of change in physical and mechanical properties of anthracite under temperature exposure. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 41—51. DOI: 10.25018/0236_1493_2021_41_0_41.

21. Kravcov A., Cherepetskaya E., Svoboda P., Blokhin D., Ivanov P., Shibaev I. Thermal infrared radiation and laser ultrasound for deformation and water saturation effects testing in limestone. Remote Sensing. 2020, vol. 12, article 4036. DOI: 10.3390/rs12244036.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.