Rotary table DC drive operation under conditions of unstable rotation of drill bit

The article analyzes operation of DC drive in the thyristor converter–drive system (TC–D) of drill string under conditions of self-oscillations and unstable rotation of drill bit, with jamming, arrest and subsequent stick–slip. The problem of nonsteady rotation has become the most acute with arrival of cutting/grinding type PDC bits currently common in drilling. This type bits contribute to stick–slip, on the one hand, and, and the same time, are the most susceptible to this effect, which results in premature failure of the tool. For the years passed since PDC bit came into use, various methods to overcome unstable rotation of drill bits have been developed and implemented in drilling, but the problem yet remains unsolved and is being amply investigated. This article considers the problem solvability using an automatic DC drive. A three-mass model of rotary table DC drive in TC–D system has been developed and implemented in MatLab. The model takes into account deformation, elastic vibrations and energy dissipation in drill string with slave drive control via the drill anchor channel and actuation channel. The computer-aided modeling allowed testing and proving the typical modes of control over self-oscillations and unstable rotation of drill bit with stick–slip effect. The ways of improving the rotary table DC drive control are identified.

Keywords: DC drive, rotary table, bit rotation modes, drill string self-oscillations, stick–slip effect, automatic control system, computer-aided modeling.
For citation:

Ershov M. S., Balitsky V. P., Melik-Shakhnazarova I. A. Rotary table DC drive operation under conditions of unstable rotation of drill bit. MIAB. Mining Inf. Anal. Bull. 2020;(11):166-179. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-166-179.

Issue number: 11
Year: 2020
Page number: 166-179
ISBN: 0236-1493
UDK: 622.817:621.311
DOI: 10.25018/0236-1493-2020-11-0-166-179
Article receipt date: 10.03.2020
Date of review receipt: 05.08.2020
Date of the editorial board′s decision on the article′s publishing: 10.10.2020
About authors:

M.S. Ershov1, Professor, e-mail:,
V.P. Balitsky1, Assistant Professor,
I.A. Melik-Shakhnazarova1, Assistant Professor,
1 I.M. Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia.


For contacts:

M.S. Ershov, e-mail:


1. Cunningham R. A. Analysis of downhole measurements of drill string forces and motions. Journal of Engineering for Industry. 1968. Vol. 90. No 2. Pp. 208—216. DOI:10.1115/1.3604616.

2. Brett J. F. The Genesis of bit-induced torsional drillstring vibrations. SPE Drilling Engineering. 1992. Vol. 7. No 3.

3. Vaziri V., Kapitaniak M., Wiercigroch M. Suppression of drill-string stick–slip vibration by sliding mode control: Numerical and experimental studies. European Journal of Applied Mathematics. 2018. Vol. 29. No 5. Pp. 805–825. DOI: 10.1017/S0956792518000232.

4. Ratov B. T., Fedorov B. V., Omirzakova E. J., Korgasbekov D. R. Development and improvement of design factors for PDC cutter bits. MIAB. Mining Inf. Anal. Bull. 2019, no 11, pp. 73—80. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-73-80.

5. Besselink B., Vromen T., Kremers N., van de Wouw N. Analysis and control of stickslip oscillations in drilling systems. IEEE Transactions on Control Systems Technology. 2016. Vol. 24. No 5. Pp. 1582—1593.

6. Balitskiy V. P., Zaykov D. L. Analysis of torsion oscillations of drill string and stick–slip effect on drilling. Vestnik assotsiatsii burovykh podryadchikov. 2015, no 4, pp. 2—8. [In Russ].

7. Aarsnes U. J., Van de Wouw N. Dynamics of a distributed drill string system: characteristic parameters and stability maps. Journal of Sound and Vibration. 2018. Vol. 417. No 37. Pp. 376—412. DOI: 16/j.jsv.2017.12.002.

8. Yunin E. K. Vvedenie v dinamiku glubokogo bureniya [Introduction to long hole drilling dynamics], Moscow, Knizhnyy dom «Librokom», 2015, 168 p.

9. Tang L., Zhu X., Shi C., et al. Investigation of the damping effect on stick-slip vibration of oil and gas drilling system. Journal of Vibration Engineering & Technologies. 2016. Vol. 4. No 1. Pp. 79–88.

10. Tang L., Zhu X., Qian X., Shi Ch. Effects of weight on bit on torsional stick-slip vibration of oil well drill string. Journal of Mechanical Science and Technology. 2017. Vol. 31. Pp. 4589–4597.

11. Monteiro H. L. S., Trindade M. A. Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings. Journal of Sound and Vibration. 2017. Vol. 398. Pp. 28–38.

12. Polipenko N. A., Protsuk I. S., Baklanov R. R. Experimental research data on drilling process. Vestnik assotsiatsii burovykh podryadchikov. 2019, no 2, pp. 41—44. [In Russ].

13. Mshchtsokheyn B. I., Parfenov B. M., Shpilevoy V. A. Elektroprivod, elektrooborudovanie i elektrosnabzhenie burovykh ustanovok [DC drive, electrical equipment and power supply of drilling rigs], Tyumen, 1999, 263 p.

14. Bukreev S. V. Effects of valve-and-induction motor drives on transient processes in exploration drilling string. MIAB. Mining Inf. Anal. Bull. 2017, no 10, pp. 219—225. [In Russ]. DOI: 10.25018/0236-1493-2017-10-0-219-225.

15. Tewari A. Modern Control Design with MATLAB and SIMULINK. John Wiley & Sons Ltd, 2002. 518 p.

16. Mohan Ned Advanced electric drives: analysis, control, and modeling using MATLAB/ Simulink. John Wiley & Sons, 2014. 179 p.

17. Liuping Wang, Shan Chai, Dae Yoo, Loo Gan, Ki Ng PID and predictive control of electrical drives and power convertors using MATLAB/SIMULINK. John Wiley & Sons Singapore Pte. Ltd. 2015. 370 p.

18. Melkebeek J. Electrical machines and drives. Fundamentals and advanced modelling. Springer International Publishing. 2018. 734 p. DOI: 10.1007/978-3-319-72730-1.

19. Saldivar B., Mondie S., Avila Vilchis J. C. The control of drilling vibrations: A coupled PDE-ODE modeling approach. International Journal of Applied Mathematics and Computer Science. 2016. Vol. 26. No 2. DOI:10.1515/amcs-2016-0024.

20. Leonov E. G., Simonyants S. L. Sovershenstvovanie tekhnologicheskogo protsessa uglubleniya skvazhin [Improvement of subdrilling technology], Moscow, ITS RGU nefti i gaza, 2014, 184 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.