Studies of mineralized process water spreading using electric exploration

Potash production generates much solid and liquid waste, including process brines of high mineralization. Leakage of brines from impounding basins arranged in small areas nearby production infrastructure sites and tailings storage facilities induce irreversible processes connected with salinification of soil, as well as surface and groundwater. The physical and electrical characteristics are the most sensitive to variation in mineralization. Therefore, for the hydrogeological modeling of mineralized water spreading from a waste dump and a tailings pond in a mine field at the Upper Kama Potassium Salt Deposit, electric exploration using the method of vertical electric sounding (VES) was carried out. Since there was no information on groundwater mineralization, the electric exploration data interpretation used the common dependence of electrical resistivity on groundwater mineralization: the higher resistivity means the higher mineralization. The analysis of the quantitative and qualitative interpretation of VES data revealed a regular pattern in spatial location of abnormally decreased resistivity sites, and a zone of potentially increased groundwater salinification was outlined. This article describes the implemented research findings.

Keywords: electrometry, potash production waste, geological environment pollution, tailings pond, mineralization of solutions, vertical electric sounding, electrical resistivity, quantitative and qualitative interpretation.
For citation:

Tajnickij A. A., Stepanov Ju. I., Khristenko L. A., Luchnikov M. S., Bushueva E. S. Studies of mineralized process water spreading using electric exploration. MIAB. Mining Inf. Anal. Bull. 2022;(5):39-51. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_39.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation under State Contract No. 075-03-2021-374 dated December 29, R&D Registration No. 122012000398-0.

Issue number: 5
Year: 2022
Page number: 39-51
ISBN: 0236-1493
UDK: 550.8
DOI: 10.25018/0236_1493_2022_5_0_39
Article receipt date: 01.11.2021
Date of review receipt: 02.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

A.A. Tajnickij1, Engineer, e-mail: tainickiy@mail.ru, ORCID ID: 0000-0002-0567-6187,
Yu.I. Stepanov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, e-mail: stepanov@mi-perm.ru, ORCID ID: 0000-0002-8107-6562,
M.S. Luchnikov1, Engineer, e-mail: maximluchnikov@mail.ru, ORCID ID: 0000-0001-7404-6958,
E.S. Bushueva1, Engineer, e-mail: katerina.bushueva@mail.ru, ORCID ID: 0000-0002-0067-3868,
L.A. Hristenko1, Cand. Sci. (Geol. Mineral.), Assistant Professor, e-mail: liudmila.hristenko@yandex.ru, ORCID ID: 0000-0002-1234-2599,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.A. Tajnickij, e-mail: tainickiy@mail.ru.

Bibliography:

1. Knyazev V. V., Komarov Yu. А. Placement type of slurry pits on the territory of the future saline dump. MIAB. Mining Inf. Anal. Bull. 2015, no. 5, pp. 97—101. [In Russ].

2. Alexandrov P. N., Modin I. N. About system approach to data of electrometric monitoring. Inzhenernye izyskaniya. 2015, no. 3, pp. 42—50. [In Russ].

3. Sanfirov I. A., Stepanov Yu. I., Fatkin K. B., Gerasimova I. Yu., Nikiforova A. I. Shallow depth geophysical surveys at the Verkhnekamskoe potassium salt deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2013, no. 6, pp. 71—78. [In Russ].

4. Sanfirov I. A., Yaroslavtzev A. G., Nikiforov V. V. Engineering geological studies of nearsurface natural and technogenic processes and heterogeneity. Gornyi Zhurnal. 2014, no. 12, pp. 8—12. [In Russ].

5. Bychkov S. G., Dolgal A. S., Simanov А. А. Synthesis of qualitative and quantitative methods of information extraction from gravimetric data. Gornyi Zhurnal. 2013, no. 6, pp. 26—29. [In Russ].

6. Zhukov А. А., Kolesnikov V. P., Laskina Т. А. Monitoring control of physical state of the environment by the electrometry methods on the earth's surface deformation potentially dangerous areas. MIAB. Mining Inf. Anal. Bull. 2015, no. 4, pp. 163—171. [In Russ].

7. Khristenko L. A., Stepanov J. I., Kichigin A. V., Parshakov E. I., Tainickiy A. A., Shiryaev K. N. Using of probabilistic-statistical characteristics in the interpretation of electrical survey monitoring observations. Practical and Theoretical Aspects of Geological Interpretation of Gravitational, Magnetic and Electric Fields: Proceedings of the 45th Uspensky International Geophysical Seminar. Springer Proceedings in Earth and Environmental Sciences, Springer, Cham, 2019, pр. 313—320. DOI: 10.1007/978-3-319-97670-9_36.

8. Hristenko L. A., Kichigin A. V., Parshakov E. I., Shiryaev K. N., Stepanov Y. I., Tainickiy A. A. Improvement of interpretation of the monitoring data electrical investigation by means of the theory of estimates. Engineering Geophysics 2017. 13th Conference and Exhibition on Engineering Geophysics. Conference Proceedings. 2017, article 129037. DOI: 10.3997/22144609.201700419.

9. Stepanov Yu. I., Mukhametshin А. М. Selection of deep abnormal watercourse based on measurements of natural field in complex studies of urban areas. MIAB. Mining Inf. Anal. Bull. 2010, no. 12, pp. 130—134. [In Russ].

10. Fedorova О. I. Integration of vertical and differential electrosounding in engineering geological and geoecological studies. Geofizicheskie issledovaniya. 2014, vol. 15, no. 2, pp. 38—46. [In Russ].

11. Duda R., Mżyk S, Farbisz J., Bania G. Investigating the pollution range in groundwater in the vicinity of a tailings disposal site with vertical electrical soundings. Polish Journal of Environmental Studies. 2020, vol. 29, no. 1, pp. 101—110. DOI: 10.15244/pjoes/100478.

12. Wilkinson P., Chambers J, Uhlemann S., Meldrum P., Smith A., Dixon N., Loke M. H. Reconstruction of landslide movementsby inversion of 4-D electrical resistivity tomography monitoring data. Geophysical Research Letters. 2016, no. 43. DOI:10.1002/2015GL067494.

13. Raji W. O., Adeoye T. O. Geophysical mapping of contaminant leachate around a reclaimed open dumpsite. Journal of King Saud University — Science. 2017, no. 29, pp. 348— 359. DOI: 10.1016/j.jksus.2016.09.005.

14. Shiryaev K. N. Qualification of groundwater pollution area by the technogenic brines with the help of electrical survey. XVII Ural'skaya molodezhnaya nauchnaya shkola po geofizike. Cbornik dokladov [XVII Ural Youth Scientific School of Geophysics. Collection of reports], Ekaterinburg, IGF UrO RAN, 2016, pp. 200—202.

15. Ellanskiy M. M. Petrofizicheskie svyazi i kompleksnaya interpretatsiya dannykh promyslovoy geofiziki [Petrophysical communications and complex interpretation of the data of field geophysics], Moscow, Nedra, 1978, 215 p.

16. Ogilvi A. A. Osnovy inzhenernoy geofiziki: Uchebnik dlya vuzov. Pod red. V. A. Bogoslovskogo [Fundamentals of engineering geophysics. Textbook for high schools. Bogoslovskiy V. A. (Ed.)], Moscow, Nedra, 1990, 501 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.