Study of seismic activity during mining of a rockburst hazardous deposit with counter fronts

The article presents the results of a study of peculiarities of rock mass failure during the development of a rockburst hazardous deposit by counter fronts on the example of one of the Khibiny deposits. In order to identify the peculiarities of the seismic process development at different stages of the deposit development, changes in seismic activity and stress field have been analysed. The seismic process has been studied on the basis of a multistage model of solid fracture and a modified concentration criterion (or the parameter of convergence of seismic events), based on which seismic events have been clustered. The approach applied takes into account the characteristics of seismic events in the time-coordinate-energy space, which makes it possible to determine the peculiarities of interaction between different-scale events. The seismic data have been compared with the calculated characteristics of the active stress field during the periods between bulk blasts in the junction sections of the two mining fronts. The relevance of the research is due to the fact that the approach used allows studying the features of energy exchange in the rock mass on the basis of data on the released seismic energy and data on the redistribution of stresses on the example of a separate section of the rock mass.

Keywords: monitoring, seismicity, rockburst hazardous deposits, stress field, stress-strain state, the Khibiny rock massif, numerical simulation, underground mining, rockburst hazard.
For citation:

Zhuravleva O. G., Zhukova S. A., Avetisian I. M., Dmitriev S. V. Study of seismic activity during mining of a rockburst hazardous deposit with counter fronts. MIAB. Mining Inf. Anal. Bull. 2022;(12-1):143-154. [In Russ]. DOI: 10.25018/0236_1493_2022_121_0_143.

Acknowledgements:
Issue number: 12
Year: 2022
Page number: 143-154
ISBN: 0236-1493
UDK: 550.343+УДК 622.83
DOI: 10.25018/0236_1493_2022_121_0_143
Article receipt date: 25.03.2022
Date of review receipt: 11.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

O.G. Zhuravleva1, Cand. Sci. (Eng.), Senior Researcher, e-mail: o.zhuravleva@ksc.ru, ORCID ID: 0000-0002-8986-9559,
S.A. Zhukova1, Cand. Sci. (Eng.), Senior Researcher, e-mail: svetlana.zhukowa@yandex.ru, ORCID ID: 0000-0003-0769-6584,
I.M. Avetisian1, Cand. Sci. (Eng.), Senior Researcher, e-mail: i.avetisian@ksc.ru, ORCID ID: 0000-0002-4569-9594,
S.V. Dmitriev1, Researcher, e-mail: s.dmitriev@ksc.ru, ORCID ID: 0000-0003-0422-5699,
1 Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

 

For contacts:

O.G. Zhuravleva, e-mail: o.zhuravleva@ksc.ru.

Bibliography:

1. Batugin A. S. General features of strong rock bursts and induced earthquakes in critical-stress areas of the Earth’s crust.Gornyi Zhurnal. 2021, no. 1, pp. 22—27. [In Russ]. DOI: 10.17580/gzh.2021.01.04.

2. Rasskazov I. Yu, Saksin B. G., Usikov V. I., Potapchuk M. I. Rock mass geodynamics and mining-induced rockbursting at Nikolaev complex deposit. Gornyi Zhurnal. 2016, no. 12, pp. 13–19. [In Russ]. DOI: 10.17580/gzh.2016.12.03.

3. Dineva S., Boskovic M. Evolution of seismicity at Kiruna Mine. Deep Mining 2017: Proceedings of the Eighth International Conference on Deep and High Stress Mining Perth. Australian Centre for Geomechanics, 2017, pp. 125–140.

4. Mendecki A. J. Mine seismology reference book: seismic hazard. Institute of Mine Seismology, 2016, 88 p.

5. Kozyrev A. A., Semenova I. E., Zhuravleva O. G., Panteleev A. V. Hypothesis of strong seismic event origin in Rasvumchorr Mine on January 9, 2018. MIAB. Mining Inf. Anal. Bull. 2018, no. 12, pp. 74—83. [In Russ]. DOI: 10.25018/0236-1493-2018-12-0-74-83.

6. Kozyrev A. A., Zhukova S. A., Zhuravleva O. G., Onuprienko V. S. Induced seismicity of rock mass: Development of instrumental and methodological support to control seismicity at the khibiny apatite-nepheline deposits. Gornyi Zhurnal. 2020, no. 9, pp. 19—26. [In Russ]. DOI: 10.17580/gzh.2020.09.02.

7. Zhukova S. A., Zhuravleva O. G., Onuprienko V. S., Streshnev A. A. Seismic behavior of rock mass in mining rockburst-hazardous deposits in the Khibiny Massif. MIAB. Mining Inf. Anal. Bull. 2022, no. 7, pp. 5–17. [In Russ]. DOI: 10.25018/0236_1493_2022_7_0_5.

8. Emanov A. A., Fateyev A. V., Shevkunova E. V., Podkorytova V. G., Kuprish O. V., Induced seismicity in coal and iron ore areas of Kuzbass. Russian Journal of Seismology. 2020, vol. 2, no. 3, pp. 88—96. [In Russ]. DOI: 10.35540/2686-7907.2020.3.08.

9. Eremenko A. A., Mashukov I. V., Eremenko V. A. Geodynamic and seismic events under rockburst-hazardous block caving in Gornaya Shoria. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no. 1, pp. 70—76. DOI: 10.1134/S1062739117011859.

10. Zlobina T. V., Dyagilev R. A. Improvement of the model of influence of mining-induced factors for seismic activity prediction at the SKRU-2 mine. Geophysics. 2019, no. 5, pp. 37—42. [In Russ].

11. Yakovlev D. V., Tsirel S. V., Mulev S. N. Laws of spreading and operational evaluation procedure for induced seismicity in mines and in mining areas. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2016, no. 2, pp. 34—47. [In Russ]. DOI: 10.1134/ S1062739116020369.

12. Lasocki S., Orlecka-Sikora B., Mutke G., Pytel W., Rudzinski L., Markowski P., Piasecki P. A catastrophic event in Rudna copper-ore mine in Poland on 29 November, 2016: What, how and why. 9th International symposium on rockbursts and seismicity in mines. Santiago, Chile, 2017, pp. 316–324.

13. Liu J.-P, Feng X.-T, Van Aswegen G., Blake W., Srinivasan C., Rao M. V. M. S., Zembaty Z. Case histories of rockbursts at metal mines. Rockburst. Mechanisms, Monitoring, Warning, and Mitigation. Chapter 3, 2018, pp. 47–92. DOI: 10.1016/B978-0-12-805054-5.00003-2.

14. Simser B. P. Rock burst management in Canadian hard rock mines. Journal of Rock Mechanics and Geotechnical Engineering. 2019, vol. 11, no. 5, pp. 1036–1043. DOI: 10.1016/j. jrmge.2019.07.005.

15. Foulger G. R., Wilson M. P., Gluyas J. G., Julian B. R., Davies R. J. Global review of human-induced earthquakes. Earth-Science Reviews. 2018, vol. 178, pp. 438—514. DOI: 10.1016/j.earscirev.2017.07.008.

16. Baranov S. V., Zhukova S. A., Korchak P. A., Shebalin P. N. Productivity of mining-induced seismicity. Fizika Zemli. 2020, no. 3, pp. 40—51. [In Russ]. DOI: 10.1134/S1069351320030015.

17. German V. I. Rock failure prediction in mines by seismic monitoring data. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no. 2, pp. 99—109. [In Russ]. DOI: 10.1134/S1062739114020124.

18. De Santis F., Renaud V., Gunzburger Y., Kinscher J., Bernard P., Contrucci I. In situ monitoring and 3D geomechanical numerical modelling to evaluate seismic and aseismic rock deformation in response to deep mining. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 129, article 104273. DOI: 10.1016/j.ijrmms.2020.104273.

19. Chlebowski D., Burtan Z. Mining-induced seismicity during development works in coalbeds in the context of forecasts of geomechanical conditions. Energies. 2021, vol. 14, no. 20, article 6675. DOI: 10.3390/en14206675.

20. Das Jennifer P., Porchelvan P., Naik S. R. Numerical modelling of mining induced seismicity in deep closed mines: A case study. Proceedings of Geotechnical Challenges in Mining, Tunneling and Underground Infrastructures. Singapore: Springer Nature Singapore, 2022, pp. 437–455. DOI: 10.1007/978-981-16-9770-8_28.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.