Processes and velocity of dissolution of Permian-age sylvinite in the Ural region

The article points at the need to analyze processes and velocity of dissolution of Permian-age sylvinite in the Ural region. The procedures of the sample preparation and lab-scale tests on dissolution velocities in water and in sodium chloride solution at different temperatures and under different conditions are described. The data on chemical compositions of various sylvinite samples, dissolution velocities and material constitution of water-insoluble residue are presented. The aim of the research was to analyze the processes and velocities of the Ural sylvinite dissolution in water and in sodium chloride solution at the temperatures of 20 and 500 °C in the modes of free and induced convection. The research tasks were to determine compositions of salt and minerals, to analyze texture and structure, and to estimate influence exerted by water-insoluble impurities and gas microinclusions on the velocity and course of dissolution. The methods involved were: petrographic analysis of texture and structure of sylvinite; gravimetriс determination of dissolution velocity and density of samples; picnometer method to find densities of brines; atomic emission spectroscopy of chemistry of initial samples and solutions (brines); quantitative X-ray phase analysis of mineral composition of water-insoluble residue. The dissolution velocities prove suitability of Permian-age sylvinite for extraction by in-situ dissolution in the Ural region.

Keywords: sylvinite, potassium chloride, halopelite, geotechnology, mining, dissolution velocity, dissolution parameters, brine, density.
For citation:

Shakirov T. R., Vafina M. S., Nazharova L. N. Processes and velocity of dissolution of Permian-age sylvinite in the Ural region. MIAB. Mining Inf. Anal. Bull. 2021;(11):146-158. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_146.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 146-158
ISBN: 0236-1493
UDK: 66.061.16
DOI: 10.25018/0236_1493_2021_11_0_146
Article receipt date: 12.02.2021
Date of review receipt: 01.03.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

T.R. Shakirov1,2, Graduate Student, Junior Researcher,
M.S. Vafina1,2, Graduate Student, Leading Process Engineer,
L.N. Nazharova2, Cand. Sci. (Eng.), Assistant Professor,
1 JSC «Central Scientific Research Institute of Geology Nonmetallic Mineral Resources» (JSC «CSRIgeolnerud»), 420097, Kazan, Republic of Tatarstan, Russia,
2 Kazan National Research Technological University, 420015, Kazan, Republic of Tatarstan, Russia.

 

For contacts:

T.R. Shakirov, M.S. Vafina, e-mail: vak33andrei@yandex.ru.

Bibliography:

1. Yager D. B. Potash—A vital agricultural nutrient sourced from geologic deposits. Reston, Virginia: U.S. Geological Survey, 2016. 38 p.

2. Kudryashov A. I. Verkhnekamskoe mestorozhdenie soley [Verkhnekamskoe salt deposit], Moscow, Epsilon Plyus, 2013, 368 p.

3. Khayrullina E. A., Novoselova L. V., Poroshina N. V. Natural and anthropogenic sources of soluble salts on the territory of the upper Kama potash deposit. Geographical bulletin. 2017, no. 1(40), pp. 93—101. [In Russ]. DOI: 10.17072/2079-7877-2017-1-93-101.

4. Pierzyna P., Popczyk M., Suponik T. Testing the possibility of leaching salt debris obtained from underground excavations. E3S Web of Conferences, 2017, vol. 18, no. 3, pp. 10—16. DOI: 10.1051/e3sconf/201712301033.

5. Khayrulina E. A., Khomich V. S., Liskova M. Yu. Geoecological problems of the development of potash salts. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2018, no. 2, pp. 112—126. [In Russ].

6. Seleznev A. V., Mubarakov R. G. Production of brines. Improving the environmental performance of technology. Ecology and Industry of Russia. 2013, no. 7, pp. 34—36. [In Russ].

7. Nazarkin V. V., Novikov A. A., Malukhin N. G., Zavalishin V. A. Patent RU 2016141106. 17.11.2017. [In Russ].

8. Yang X., Liu. X, Zang W., Lin Z., Wang Q. A study of analytical solution for the special dissolution rate model of rock salt. Advances in Materials Science and Engineering. 2017, vol. 11, pp. 1246—1255.

9. Kalchaeva B. Sh., Kochkorova Z. B., Sulaimankulov K. S., Satyvaldiev A. S., Kydynov M. K.Leaching of natural salt Jalda-Sui Deposit. Izvestiya vysshikh uchebnykh zavedeniy (Kyrgyzstan). 2011, no. 5, pp. 122—123. [In Russ].

10. Huaide Ch., Haizhou M., Qingyu H., Zhihong Zh., Liming X.,Guangfen R. Model for the decomposition of carnallite in aqueous solution. International Journal of Mineral Processing. 2015, vol. 139, рр. 36—42.

11. Il'inskiy G. A. Opredelenie plotnosti mineralov [Determination of the density of minerals], Leningrad, Nedra, 1975, 119 p.

12. Zemskov A. N. Studying the gas content of the salt stratum of the Garlykskoye potassium salt deposit. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2017, no. 7, pp. 35—42. [In Russ]. DOI: 10.21440/0536-1028-2017-7-35-42.

13. Karazhanov N. A. Osnovy kinetiki rastvoreniya soley [Fundamentals of the kinetics of salt dissolution], Alma-Ata, Nauka, 1989, 192 p. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.