Study of resistance to dusting of filtering face pieces used by coal mines workers

One of the most common harmful production factors in underground coal mining is the resulting fine industrial dust, the inhalation of which is the main cause of occupational lung and bronchial diseases among underground personnel. In the article, the authors raise the issue of correctly determining the required number of filtering face pieces, which must be given to an worker for a shift for certain conditions. Today, unfortunately, at mining enterprises, the purchase and issuance of personal respiratory protection equipment (PRPE) to workers is carried out based either on the minimum cost of a particular model or reference information on its protection class at the rate of one filtering face pieces per shift. However, when choosing a respirator and determining the required amount, one should not rely only on the specified protection class (FFP1, FFP2 or FFP3), introduced by GOST 12.4.294-2015 (EN 149:2001 + A1:2009). This is due to the fact that the actual dispersed and material composition of airborne dust at various workplaces differs markedly from the properties of dolomite dust, on which filtering face pieces are tested. The paper describes the authors' laboratory studies of the effectiveness and re-sistance to dusting of the five most accessible and widespread models of respirators of various protection classes in Russian mining enterprises «Respic RS2202», «У-2К», «Spirotek vs1200», «Alina-210», «WALL AIR 95HK». A method for determining the most suitable respirator model with the maximum time for the onset of «respiratory dis-comfort» is proposed.

Keywords: coal mines, personal respiratory protection equipment, filtering face pieces, protection class, industrial dust, occupational respiratory diseases, respiratory discomfort, resistance to dusting.
For citation:

Kolvakh K. A., Kornev A. V., Tumanov M. V., Lyubimova A. L., Rodionov V. A. Study of resistance to dusting of filtering face pieces used by coal mines workers. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):164-179. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_164.

Issue number: 9
Year: 2023
Page number: 164-179
ISBN: 0236-1493
UDK: 614.894:331.438
DOI: 10.25018/0236_1493_2023_91_0_164
Article receipt date: 17.06.2023
Date of review receipt: 07.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

K.A. Kolvakh1, Cand. Sci. (Eng.), Assistant, e-mail:, ORCID ID: 0000-0003-0145-9465,
A.V. Kornev1, Cand. Sci. (Eng.), Associate Professor, e-mail:, ORCID ID: 0000-0001-6371-9969,
M.V. Tumanov1, Cand. Sci. (Med.), Associate Professor, e-mail:, ORCID ID: 0000-0003-3795-1005,
A.L. Lyubimova1, Student, e-mail:, ORCID ID: 0009-0007-7394-3500,
V.A. Rodionov1, Cand. Sci. (Eng.), Associate Professor, e-mail:, ORCID ID: 0000-0003-2398-5829,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

A.V. Kornev, e-mail:


1. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. 2022, vol. 1, pp. 107—115. DOI: 10.33271/nvngu/2022-1/107.

2. Hoebbel C. L., Haas E. J., Ryan M. E. Exploring worker experience as a predictor of routine and non-routine safety performance outcomes in the mining industry. Mining Metallurgy and Exploration. 2022, vol. 39, no. 2, pp. 485—494. DOI: 10.1007/s42461-021-00536-2.

3. Glebova E. V., Volokhina A. T., Vikhrov A. E. Assessment of the efficiency of occupational safety culture management in fuel and energy companies. Journal of Mining Institute. 2023, vol. 259, pp. 68—78. [In Russ]. DOI: 10.31897/PMI.2023.12.

4. Gendler S., Prokhorova E. Risk-based methodology for determining priority directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021, vol. 10, no. 20, pp. 1—14. DOI: 10.3390/resources10030020.

5. Mokhnachuk I. I., Piktushanskaya T. E., Bryleva M. S., Betts K. V. Workplace mortality at coal industry enterprises of Russia. Russian Journal of Occupational Health and Industrial Ecology. 2023, no. 63(2), pp. 88—93. [In Russ]. DOI: 10.31089/1026-9428-2023-63-2-88-93.

6. Tikhonova G. I., Piktushanskaya T. E., Gorchakova T. Yu., Serebryakov P. V. Life expectancy of coal miners with an established diagnosis of occupational diseases. Russian Journal of Occupational Health and Industrial Ecology. 2022, no. 63(6), pp. 419—426. [In Russ]. DOI: 10.31089/1026-9428-2022-62-6-419-426.

7. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021, vol. 250, pp. 553—561. [In Russ]. DOI: 10.31897/PMI.2021.4.8.

8. Balovtsev S. V. Higher rank aerological risks in coal mines. Mining Science and Technology. 2022, vol. 7, no. 4, pp. 310—319. DOI: 10.17073/2500-0632-2022-08-18.

9. Vasilenko T. A., Islamov A., Doroshkevich A. S., Ludzik K., Chudoba D., Кirillov А., Mita C. Permeability of a coal seam with respect to fractal features of pore space of fossil coals. Fuel. 2022, vol. 329, article 125113. DOI: 10.1016/j.fuel.2022.125113.

10. Eremeeva A. M., Kondrasheva N. K., Khasanov A. F., Oleynik I. L. Environmentally friendly diesel fuel obtained from vegetable raw materials and hydro-carbon crude. Energies. 2023, vol. 16, no. 5, article 2121, pp. 1—12. DOI: 10.3390/en16052121.

11. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022, vol. 253, pp. 41—48. [In Russ]. DOI: 10.31897/PMI.2022.1.

12. Khomenko A. O., Yakshina N. V., Mushnikov V. S., Ilyin S. M., Sa-marskaya N. A., Chekmareva M. A. The influence of vibroacoustic factors on the safety and health of industrial employees. Ekonomika truda. 2022, vol. 9, no. 12, pp. 2175—2196. [In Russ]. DOI: 10.18334/ et.9.12.116410.

13. Martynova N. A., Kislitsyna V. V. The occupational morbidity of the miners (literature review). Health. Medical ecology. Science. 2017, no. 5, pp. 46—52. [In Russ]. DOI: 10.5281/ zenodo.1115460.

14. Gorbanev S. A., Syurin S. A., Frolova N. M. Working conditions and occupational pathology of coal miners in the Arctic. Russian Journal of Occupational Health and Industrial Ecology. 2019, no. 8, pp. 452—457. [In Russ]. DOI: 10.31089/1026-9428-2019-59-8-452-457.

15. Fomin A. I. Analysis of conditions and labor protection at enteprises of Kuzbass coal industry. Bulletin of the Scientific Center of VostNII on Industrial and Environmental Safety. 2020, no. 3, pp. 57—61. [In Russ]. DOI: 10.25558/VOSTNII.2020.53.88.007.

16. Makarov V. N., Makarov N. V., Ugolnikov A. V., Sverdlov I. V. Energy-efficient technology of technogenic accidents containment in mines based on a numerically simulated model of hydro vortex coagulation. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2019, no. 2, pp. 118—127. [In Russ]. DOI: 10.21440/0536-1028-2019-2-118-127.

17. Zaburdyaev V. S. Prognosis and prevention of risks of formation of explosive mixtures in coal mines. Occupational Safety in Industry. 2019, no. 6, pp. 65—69. [In Russ]. DOI: 10. 24000/0409-2961-2019-6-65-69.

18. Luo Y., Wang D., Cheng J. Effects of rock dusting in preventing and reducing intensity of coal mine explosions. International Journal of Coal Science and Technology. 2017, vol. 4, no. 2, pp. 102—109. DOI: 10.1007/s40789-017-0168-z.

19. Voroshilov Ya. S., Fomin A. I. The influence of coal dust on the occupational morbidity of coal industry workers. Ugol'. 2019, no. 4, pp. 20—25. [In Russ]. DOI: 10.18796/0041-57902019-4-20-24.

20. Gabov V. V., Xuan N. V., Zadkov D. A., Tho T. D. Increasing the content of coarse fractions in the mined coal mass by a combine using paired cuts. Journal of Mining Institute. 2022, vol. 257, pp. 764—770. [In Russ]. DOI: 10.31897/PMI.2022.66.

21. Chebotarev A. G. Risks of development of occupational diseases of dust etiology in workers of mining enterprises. Russian Mining Industry Journal. 2018, no. 3, pp. 66—70. [In Russ]. DOI: 10.30686/1609-9192-2018-3-139-66-70.

22. Korshunov G. I., Karimov A. M., Magamedov G. S., Tyulkin S. A. Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2023, no. 7, pp. 132—144. [In Russ]. DOI: 10.25018/0236_1493_2023_7_0_132.

23. Korneva M. V. Razrabotka i obosnovanie meropriyatiy po snizheniyu kontsentratsii tonkodispersnykh fraktsiy v pylevom aerozole ugol'nykh shakht [Development and justification of measures to reduce the concentration of fine fractions in the dust aerosol of coal mines], Candidate’s thesis, Saint-Petersburg, SPbGU, 2020, 20 p.

24. Ivanov A. V., Smirnov Y. D., Chupin S. A. Development of the concept of an innovative laboratory installation for the study of dust-forming surfaces. Journal of Mining Institute. 2021, vol. 251, pp. 757—766. [In Russ]. DOI: 10.31897/PMI.2021.5.15.

25. Bukhtiyarov I. V., Chebotarev A. G. Hygienic problems of improving working conditions at mining enterprises. Russian Mining Industry Journal. 2018, no. 5, pp. 33—36. [In Russ]. DOI: 10.30686/1609-9192-2018-5-141-33-35.

26. Colinet J. F. The impact of black lung and a methodology for controlling respirable dust. Mining, Metallurgy & Exploration. 2020, vol. 37, no. 49, pp. 1847—1856. DOI: 10.1007/ s42461-020-00278-7.

27. Kornev A. V., Spitsyn A. A., Korshunov G. I., Bazhenova V. A. Preventing dust explosions in coal mines: Methods and current trends. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 133—149. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_133.

28. Kurnosov I. Y. Effect of operational parameters of spraying on dust suppression rate in roadways. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 150—162. [In Russ]. DOI: 10.25018/ 0236_1493_2023_3_0_150.

29. Borowski G., Smirnov Y. D., Ivanov A. V., Danilov A. S. Effectiveness of carboxymethyl cellulose solutions for dust suppression in the mining industry. International Journal of Coal Preparation and Utilization. 2020, vol. 1, no. 1, pp. 1—13. DOI: 10.1080/19392699.2020.1841177.

30. Wang H., Cheng S., Wang H., He J., Fan L., Danilov A. S. Synthesis and properties of coal dust suppressant based on microalgae oil extraction. Fuel. 2023, vol. 338, article 127273. DOI: 10.1016/j.fuel.2022.127273.

31. Xiaoxue Liao, Bo Wang, Liang Wang, Jintuo Zhu, Peng Chu, Zibin Zhu, Siwen Zheng Experimental study on the wettability of coal with different metamorphism treated by surfactants for coal dust control. ACS Omega. 2021, vol. 6, no. 34, pp. 21925—21938. DOI: 10.1021/ acsomega.1c02205.

32. Skopintseva O. V., Vertinskiy A. S., Ilyakhin S. V., Savelev D. I., Prokopovich A. Yu. Substantiation of efficient parameters of dust-controlling processing of coal massif in mines. Gornyi Zhurnal. 2014, no. 5, pp. 17—20. [In Russ].

33. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 2, pp. 1917—1929.

34. Nikulin A. N., Fedorova A. V., Buldakova E. G., Epifantsev K. V., Kudinov V. V. Improving the effectiveness of the protective properties of filter respirators due to their treatment with impregnating solutions. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 174—186. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_174.

35. Saraev I. V., Bubnov A. G. Development of a methodology for the selection of personal protective equipment for respiratory organs and vision of firefighters based on the indicator of relative overall benefit. Civil security technology. 2017, vol. 14, no. 1 (51), pp. 76—79. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.