Properties and composition of Yakutian lignite as a source of humic substances

This article explores lignite samples from the Lena Basin. The data on the qualities and material constitution of the lignite samples are given. The Kangalass, Kirov and Kempendyai lignite samples have on the whole similar properties, compositions and ranks. The petrographic compositions of the test samples are dominated by huminite-group macerals, and the secondary components are macerals from inertinite and liptinite groups. The mineral analysis of the test lignite samples exhibits a low content of potentially hazardous elements. The studies of the content of «free» humic acids (HA) in lignites show that the Kangalass and Kirov samples feature a higher yield of HA. With a view to enhancing the yield of HA from lignite, the methods of mechanical and ultrasonic activation are considered. It is found that ultrasonic treatment allows a higher yield of HA than mechanical activation. Furthermore, the yield of HA is appreciably influenced by the time of ultrasonic treatment. For example, ultrasonic activation for one hour enabled the increased yield of HA from the Kangalass and Kirov lignite samples by 2.2 and 2.5 times, respectively, as compared with their initial content of HA.

Keywords: lignite, humic substances, humic acid yield, proximate analysis, petrography, macroand micro-elements, mechanical activation, ultrasonic treatment.
For citation:

Solovev T. M., Shaikhislam G. B., Epstein S. A., Sokolova M. D. Properties and composition of Yakutian lignite as a source of humic substances MIAB. Mining Inf. Anal. Bull. 2024;(1):67-79. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_67.


The study was carried out within the framework of the Sustainable Development Technology Strategy Project and Priority 2030 Program of Strategic Academic Leadership.

Issue number: 1
Year: 2024
Page number: 67-79
ISBN: 0236-1493
UDK: 553.08:553.96:547.992.2(571.56)
DOI: 10.25018/0236_1493_2024_1_0_67
Article receipt date: 18.09.2023
Date of review receipt: 03.11.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

T.M. Solovev1, Cand. Sci. (Eng.), Leading Engineer of Scientific Project, e-mail:, ORCID ID: 0000-0002-7824-7623,
G.B. Shaikhislam1, Graduate Student, e-mail:, ORCID ID: 0009-0004-6988-1747,
S.A. Epstein1, Dr. Sci. (Eng.), Professor, Head of Laboratory, e-mail:, ORCID ID: 0000-0001-8356-4319,
M.D. Sokolova, Dr. Sci. (Eng.), Chief Researcher, Director, Institute of Oil and Gas Problems, Siberian Branch of Russian Academy of Sciences, 677007, Yakutsk, Russia, e-mail:, ORCID ID: 0000-0003-2306-5870,
1 Research Testing Laboratory of Physics and Chemistry of Coals, National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

T.M. Solovev, e-mail:


1. Pavlov N. V., Takaishvili L. N., Ivanova A. E. Coal in energy balance of the Republic of Sakha (Yakutia). Ipolytech Journal. 2022, vol. 26, no. 4, pp. 657—668. [In Russ]. DOI: 10.21285/1814-3520-2022-4-657-668.

2. Fedorov V. I., Gavrilov V. L. Change in particle size distribution of low-rank coal in longterm storage. MIAB. Mining Inf. Anal. Bull. 2021, no. 12-1, pp. 223—232. [In Russ]. DOI: 10. 25018/0236_1493_2021_121_0_223.

3. Sorokin A. P., Kuz’minykh V. M., Konyushok A. A., Savchenko I. F., Noskova L. P., Rimkevich V. S., Krapiventseva V. V. Multi-purpose use of caustobioliths of carbonic series based on innovative coal chemistry technologies in the Far East of Russia. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2018, no. 1, pp. 166—177. [In Russ]. DOI: 10.15372/FTPRPI20180119.

4. Ismagilov Z. R., Zherebtsov S. I., Votolin K. S., Malyshenko N. V., Shpakodraev K. M. Complex processing of brown coals to produce rock wax and humic preparations. Nauka i tehnologii Sibiri. 2022, no. 5, pp. 9—18. [In Russ].

5. Zherebtsov S. I., Malyshenko N. V., Votolin K. S., Androkhanov V. A., Sokolov D. A., Dugarjav J., Ismagilov Z. R. Study of the biological activity of humine substances for the creation of preparations against desertification. Chemistry for sustainable development. 2019, vol. 27, no. 2, pp. 155—163. [In Russ]. DOI: 10.15372/KhUR2019121.

6. Zherebtsov S. I., Malyshenko N. V., Votolin K. S., Shpakodraev K. M., Ismagilov Z. R., Sokolov D. A., Androkhanov V. A. Dependence of the biological activity of brown coal humic acids on the concentrations of macro and trace elements. Solid fuel chemistry. 2021, no. 4, pp. 21—26. [In Russ]. DOI: 10.15372/KhUR2019121.

7. Gorlov E. G., Moisa Y. N., Strizhko F. N. Experimental technology for the production of polymer-humate drilling reagents. Solid fuel chemistry. 2020, no. 1, pp. 43—48. [In Russ]. DOI: 10.31857/S002311772001003X

8. Kuklina G. L., Solovov Ju. G., Zakiev R. B., Blohin Ju. F. Study of the influence of ballastfree humates from coals of Eastern Transbaikalia on the parameters of drilling fluids. MIAB. Mining Inf. Anal. Bull. 2009, no. S3, pp. 130—143. [In Russ].

9. Petrova G. I., Bychev M. I. Elektrokhimicheskaya pererabotka burykh ugley [Electrochemical processing of brown coals], Yakutsk, YAF Izd-va SO RAN, 2001, 168 p.

10. Moskalenko T. V., Mikheev V. A., Vorsina E. V. Experience in processing brown coals of the Lena basin into humic preparations. Gornyi Zhurnal. 2018, no. 1, pp. 63—67. [In Russ]. DOI: 10.17580/gzh.2018.01.11.

11. Moskalenko T. V., Mikheev V. A. Oxidative impact on brown coal of Kangalassky deposit to increase the yield of humic acids. MIAB. Mining Inf. Anal. Bull. 2015, no. S30, pp. 220—227. [In Russ].

12. Moskalenko T. V., Mikheev V. A., Vorsina E. V. Artificially obtained humin substances for restoration of soils. Advances in current natural sciences. 2018, no. 1, pp. 109—114. [In Russ].

13. Wu J., Jiang R., Lin W., Ouyang G. Effect of salinity and humic acid on the aggregation and toxicity of polystyrene nanoplastics with different functional groups and charges. Environmental Pollution. 2019, vol. 245, pp. 836—843. DOI: 10.1016/j.envpol.2018.11.055.

14. Peng X.-X., Gai S., Cheng K., Yang F. Roles of humic substances redox activity on environmental remediation. Journal of Hazardous Materials. 2022, vol. 435, article 129070. DOI: 10.1016/j.jhazmat.2022.129070.

15. Guo X., Liu H., Wu S. Humic substances developed during organic waste composting: Formation mechanisms, structural properties, and agronomic functions. Science of the Total Environment. 2019, vol. 662, pp. 501—510. DOI: 10.1016/j.scitotenv.2019.01.137.

16. Kaya C., Senbayram M., Akram N. A., Ashraf M., Alyemeni M. N., Ahmad P. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Scientific Reports. 2020, vol. 10, no. 1, article 6432. DOI: 10.1038/s41598-020-62669-6.

17. Zanin L., Tomasi N., Cesco S., Varanini Z., Pinton R. Humic substances contribute to plant iron nutrition acting as chelators and biostimulants. Frontiers in Plant Science. 2019, vol. 10, article 675. DOI: 10.3389/fpls.2019.00675.

18. Nikitina I. M., Epshtein S. A., Fomenko N. A., Kossovich E. L. Humic acids of solid fossil fuels-perspectives for application in technology and environment protection. Eurasian Mining. 2016, no. 2, pp. 33—36. DOI: 10.17580/em.2016.02.08.

19. Tan Z., Zhu H., He X., Xi B., Tian Y., Sun X., Zhang H., Ouche Q. Effect of ventilation quantity on electron transfer capacity and spectral characteristics of humic substances during sludge composting. Environmental Science and Pollution Research. 2022, vol. 29, no. 46, pp. 70269—70284. DOI: 10.1007/s11356-022-20808-8.

20. Xu J., Zhao B., Chu W., Mao J., Zhang J. Chemical nature of humic substances in two typical Chinese soils (upland vs paddy soil). A comparative advanced solid state NMR study. Science of the Total Environment. 2017, vol. 576, pp. 444—452. DOI: 10.1016/j.scitotenv.2016.10.118.

21. Xu J., Zhao B., Li Z., Chu W., Mao J., Olk D. C., Zhang J., Xin X., Wei W. Demonstration of chemical distinction among soil humic fractions using quantitative solid-state 13C NMR. Journal of Agricultural and Food Chemistry. 2019, vol. 67, no. 29, pp. 8107—8118. DOI: 10.1021/acs.jafc.9b02269.

22. El-sayed M. E. A., Khalaf M. M. R., Gibson D., Rice J. A. Assessment of clay mineral selectivity for adsorption of aliphatic/aromatic humic acid fraction. Chemical Geology. 2019, vol. 511, pp. 21—27. DOI: 10.1016/j.chemgeo.2019.02.034.

23. Solovev T. M., Hao J., Durov N. M. Composition and properties of brown coal from the Kangalassky deposit of the Republic of Sakha (Yakutia). Chemical industry today. 2022, no. 2, pp. 30—37. DOI: 10.53884/27132854_2022_2_30.

24. Yudovich Ya. E., Ketris M. P. Toksichnye elementy-primesi v iskopaemykh uglyakh [Toxic trace elements in coals], Ekaterinburg, UrO RAN, 2005, 649 p.

25. Silkin S. V., Kulikov E. E., Popov I. A. Investigation of the controlled ultrasonic dispersion of peat and brown coal in water. Proceedings of Moscow institute of physics and technology. 2018, vol. 10, no. 3 (39), pp. 86—95. [In Russ].

26. Koshelev A. V., Golovkov V. F., Derevyagina I. D., Kaabak L. V., Smirnova Zh. V., Epifanova O. A., Mamontov S. P., Eleev Ju. A. Research of humic preparations obtained from lignite. Chemistry and Technology of Organic Substances. 2019. № 3 (11), pp. 28—40. [In Russ]. DOI: 10.54468/25876724_2019_3_28.

27. Kozhevnikov Y. A., Serbin V. V. Extraction of humic substances from lignite of the Kansk-Achinsk basin by ultrasonic treatment. Transactions of Academenergo. 2019, no. 2 (55), pp. 89—97. [In Russ].

28. Stevenson F. J. Humus chemistry, genesis, composition, reactions. New York, 1982. 443 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.