Analysis of 3D vortex structures in blind drifts with blowing ventilation

The article presents new methods for analyzing 3D vortex structures of turbulent flows in blind drifts with blowing ventilation. The difficulty of identification of a 3D flow structure, even on a large scale, can be greatly reduced by comparing 3D and 2D mathematical models of turbulent air flow. Such comparison helps reveal subtle features of turbulent transfer of impurity in complex 3D vortex structures. Thus, 2D modeling becomes a 3D flow research tool. For the more comprehensive analysis of mass exchange processes in long blind drifts, this study uses a system of integral indexes proposed earlier by the present authors. These integral indexes are the air coflow and the maximal air flow velocity in a cross-section. Aside from that, the vortex formation criterion λ is used for the first time ever for vortex flows. It is found that a large-scale vortex in a blind drift has a complex 3D structure, with medium-scale and smallscale vortexes forming at the face wall. This leads, despite a drop of the maximal axial velocity in the flow, to an increase in the air coflow rate and to an intensification of interflow processes which lead to a decrease in time of outflow of impurities from the most out-of-the-way places in the face area. The comparison of the vortex structures in 3D and 2D models allows arguing in favor of current standards set for the maximum allowable values for the gap size between the air duct and the face wall, and helps illustrate advantages of increase in these values.

Keywords: mine ventilation, numerical modeling, blind drift, flow structure, 3D model, 2D model.
For citation:

Semin M. A., Faynburg G. Z. Analysis of 3D vortex structures in blind drifts with blowing ventilation. MIAB. Mining Inf. Anal. Bull. 2025;(8):71-91. [In Russ]. DOI: 10. 25018/0236_1493_2025_8_0_71.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of a state contract, R&D Project No. 122030100425-6.

Issue number: 8
Year: 2025
Page number: 71-91
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2025_8_0_71
Article receipt date: 11.11.2024
Date of review receipt: 15.04.2025
Date of the editorial board′s decision on the article′s publishing: 10.07.2025
About authors:

M.A. Semin1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: seminma@inbox.ru, ORCID ID: 0000-0001-5200-7931,
G.Z. Faynburg1, Dr. Sci. (Eng.), Professor, Chief Researcher, e-mail: faynburg@mail.ru, ORCID ID: 0000-0002-9599-7581,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, 614007 Perm, Russia.

 

For contacts:

M.A. Semin, e-mail: seminma@inbox.ru.

Bibliography:

1. Puchkov L. A., Kaledina N. O., Kobylkin S. S. System solutions to ensure methane safety of coal mines. Gornyi Zhurnal. 2014, no. 5, pp. 12—14. [In Russ].

2. Wan Y. Design and optimization of intelligent ventilation system in coal mine. E3S Web of Conferences. 2024, vol. 528, article 03020. DOI: 10.1051/e3sconf/202452803020.

3. Shvyrkov I. A. Ventilation of blind faces after burning. Occupational Safety in Industry. 1934, no. 5, pp. 5—12; no. 6, pp. 4—15. [In Russ].

4. Voronin V. N. Osnovy rudnichnoy aerogazodinamiki [Fundamentals of mine aerogasdynamics], Moscow–Leningrad, Ugletekhizdat, 1951, 492 p.

5. Kobylkin S. S., Ushakov V. K., Kuznetsov I. I. Analysis of the influence of local resistances of mine workings on the general mine aerodynamic resistance. Russian Mining Industry Journal. 2024, no. 2, pp. 93—96. [In Russ].

6. Gendrue N., Liu S., Bhattacharyya S., Clister R. An investigation of airflow distributions with booster fan for a large opening mine through field study and CFD modeling. Tunnelling and Underground Space Technology. 2023, vol. 132, article 104856. DOI: 10.1016/j.tust.2022.104856.

7. Park J., Jo Y., Park G. Flow characteristics of fresh air discharged from a ventilation duct for mine ventilation. Journal of Mechanical Science and Technology. 2018, vol. 32, pp. 1187—1194.

8. Wang W., Zhang C., Yang W., Xu H., Li S., Li C., Qi G. In situ measurements and CFD numerical simulations of thermal environment in blind headings of underground mines. Processes. 2019, vol. 7, no. 5, article 313. DOI: 10.3390/pr7050313.

9. Parra M. T., Villafruela J. M., Castro F., Mendez C. Numerical and experimental analysis of different ventilation systems in deep mines. Building and Environment. 2006, vol. 41, no. 2, pp. 87—93. DOI: 10.1016/j.buildenv.2005.01.002.

10. Zhikharev S. Ya., Tsygankov V. D., Rodionov V. A. Optimization of dust suppression processes during underground mining based on full-scale experimentation and ANSYS Fluent simulation. Gornyi Zhurnal. 2023, no. 11, pp. 70—75. [In Russ].

11. Kurnia J. C., Sasmito A. P., Mujumdar A. S. CFD simulation of methane dispersion and innovative methane management in underground mining faces. Applied Mathematical Modelling. 2014, vol. 38, no. 14, pp. 3467—3484. DOI: 10.1016/j.apm.2013.11.067.

12. Li W. J., Zou S., Yang W., Hu Q. Model of heat and mass exchange between a downcast shaft and the air flow to the mine. Geofluids. 2020, vol. 2020, no. 1, article 8853839.

13. Obracaj D., Korzec M., Deszcz P. Study on methane distribution in the face zone of the fully mechanized roadway with overlap auxiliary ventilation system. Energies. 2021, vol. 14, no. 19, article 6379. DOI: 10.3390/en14196379.

14. Branny M., Jaszczur M., Wodziak W., Szmyd J. Experimental and numerical analysis of air flow in a dead-end channel. Journal of Physics: Conference Series. 2016, vol. 745, no. 3, article 032045. DOI: 10.1088/1742-6596/745/3/032045.

15. Toraño J., Torno S., Menéndez M., Gent M. Auxiliary ventilation in mining roadways driven with roadheaders: Validated CFD modelling of dust behaviour. Tunnelling and Underground Space Technology. 2011, vol. 26, no. 1, pp. 201—210. DOI: 10.1016/j.tust.2010.07.005.

16. Kazakov B. P., Kolesov E. V., Nakariakov E. V., Isaevich A. G. Models and methods of aerogasdynamic calculations for ventilation networks in underground mines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 5—33. [In Russ].

17. Yi H., Kim M., Lee D., Park J. Applications of computational fluid dynamics for mine ventilation in mineral development. Energies. 2022, vol. 15, no. 22, article 8405. DOI: 10.3390/en15228405.

18. Brodny J., Tutak M. Applying computational fluid dynamics in research on ventilation safety during underground hard coal mining: A systematic literature review. Process Safety and Environmental Protection. 2021, vol. 151, pp. 373—400. DOI: 10.1016/j.psep.2021.05.029.

19. Semin M., Faynburg G., Tatsiy A., Levin L., Nakariakov E. Insights into turbulent airflow structures in blind headings under different ventilation duct distances. Scientific Reports. 2024, vol. 14, no. 1, article 23768. DOI: 10.1038/s41598-024-74671-3.

20. Kamenskikh A. A. Faynburg G. Z., Semin M. A., Tatsiy A. A. Experimental study on forced ventilation in dead-end mine working with various setbacks of the ventilation pipeline from the working face. Mining Science and Technology (Russia). 2024, vol. 9, no. 1, pp. 41—52. [In Russ].

21. Shih T. H., Liou W. W., Shabbir A., Yang Z., Zhu J. A new k-c eddy viscosity model for high Reynolds number turbulent flows. Computers & Fluids. 1995, vol. 24, no. 3, pp. 227—238.

22. Semin M., Ivantsov A., Lyubimova T., Isaevich A., Sukhanov A. Analyzing the impact of heat emissions from the borer miner on the efficiency of the exhaust ventilation system in a blind heading. International Journal of Heat and Mass Transfer. 2024, vol. 235, article 126183. DOI: 10.1016/j.ijheatmasstransfer.2024.126183.

23. Jeong J., Hussain F. On the identification of a vortex. Journal of Fluid Mechanics. 1995, vol. 285, pp. 69—94.

24. Bogusławski L., Popiel C. O. Flow structure of the free round turbulent jet in the initial region. Journal of Fluid Mechanics. 1979, vol. 90, no. 3, pp. 531—539.

25. Kozyrev S. A., Amosov P. V. Justification of the minimum distance from the face of the conducted working to the end of the ventilation pipes. Occupational Safety in Industry. 2012, no. 10, pp. 79—84. [In Russ].

26. Kazakov B. P., Shalimov A. V., Parshakov O. S., Bogomyagkov A. V. Blind roadway ventilation improvement by means of increasing initial air flow velocity. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, vol. 1, pp. 112—118. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.