Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide gold-bearing ore flotation

Processing of sulphide gold-bearing ores has significant difficulties due to decrease in quality of ore raw materials, increase in quantity of flotation-active rock-forming mineral phases in ores, thin disperse gold inclusions in concentrating minerals and thin inclusions of minerals themselves in rock-forming minerals. This makes the question of improvement of existing technologies actual. The main method of beneficiation of this type of ores is flotation methods due to their flexibility in terms of a wide range of reagent regimes and variation of technological parameters which makes it possible to involve ores of various genesis and material composition in processing. Refractory fine sulphide gold-bearing ores, which are also characterized by a high content of rock-forming minerals, were chosen as an object of the research. Analysis of the flotation process has established the need to use a combination of depressors due to the high recovery of rock-forming minerals, both silicates and carbonates, in the concentrate. Research on selection of depressor allowed to establish that the use of liquid glass and KMK leads to decrease in content and extraction of calcium and silicon in the concentrate. Based on the analysis of the data obtained, the use of a combination of depressors to reduce the extraction of rock-forming minerals in the concentrate with justified rates of sodium silicate and KMC 60 g/t and 55 g/t respectively at a set pH equal to 8 was substantiated.

Keywords: flotation, sulphide refractory ores, gold, flotation-active gangue minerals, carboxymethylstarch, depressors, sulphide concentrate.
For citation:

Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide goldbearing ore flotation. MIAB. Mining Inf. Anal. Bull. 2022;(6-2):161—174. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_161.

Acknowledgements:

This work was supported by the Russian Science Foundation (project no. 19–17–00096).

Issue number: 6
Year: 2022
Page number: 161-174
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2022_62_0_161
Article receipt date: 14.01.2022
Date of review receipt: 21.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Afanasova A. V.1, Cand. Sci. (Eng.), assistant professor at the department of mineral processing, https://orcid.org/0000-0002-8451-2489, afanasovaop-10@yandex.ru;
Aburova V. A.1, student at the department of mineral processing, e-mail: s161043@stud.spmi.ru;
Prokhorova E. O.1, student at the department of mineral processing, e-mail: s161028@ stud.spmi.ru;
Lushina E. A.1, student at the department of mineral processing, e-mail: s171646@stud. spmi.ru;
1 St. Petersburg Mining University, 199106, St. Petersburg, Vasilievsky Island, 21 line d.2, Russia.

 

For contacts:

Afanasova Anastasia Valerievna, e-mail: afanasovaop-10@yandex.ru

Bibliography:

1. Litvinenko V. S., Sergeev I. B. Innovations as a Factor in the Development of the Natural Resources Sector. Studies on Russian Economic Development. 2019, vol. 30, no. 6, pp. 637–645. DOI: 10.1134/S107570071906011X.

2. Litvinenko V. S., Sergeev I. B. Innovative development of the mineral resource sector. Problems of Forecasting. 2019, no. 6, pp. 60–72. [In Russ].

3. Ignatkina V. A., Makavetskas A. R., Kayumov A. A., Aksenova D. D. Analysis of causes of deterioration of technological indicators of flotation of copper-bearing sulfide ore during chamber mining of copper-pyrite deposits. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 5–22. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_5.

4. Polezhaev S. Y., Cheremisina O. V. Complex processing technology of gold-bearing concentrates: Autoclave leaching with subsequent roasting. Russian Journal of Non-Ferrous Metals. 2015, vol. 56, no. 4, pp. 404–408. DOI: 10.3103/S1067821215040185.

5. Lazarenkov V. G. Tikhomirov I. N., Zhidkov A. Y., Talovina I. V. Platinum group metals and gold in supergene nickel ores of the Moa and Nikaro deposits (Cuba). Lithology and Mineral Resources. 2005, vol. 40, no. 6, pp. 521–527. DOI: 10.1007/s10987–005–0049–1.

6. Meretukov M. A. Natural nanoparticles of gold. Tsvetnye Metaly. 2006, no. 2, pp. 36–41. [In Russ].

7. Aleksandrova T. N. Cyplakov V. N., Romashev A. O., Semenihin D. N. Removal of sorption-active carbonaceous substances from refractory gold-sulphide ores and concentrates of Mayskoye deposit. Obogashchenie rud. 2015, no. 4, pp. 3–7. [In Russ]. DOI: 10.17580/ or.2015.04.01.

8. Zakharov B. A., Meretukov M. A. Gold: refractory ores. Moscow, Ore and metals Publishing House, 2013, 452 p. [In Russ].

9. Novakov R. M., Kungurova V. E., Moskaleva S. V. Conditions of noble-metal mineralization formation in cobalt-copper-nickel sulphide ores of Kamchatka (by the example of annabergitovaya slit ore occurrence). Journal of Mining Institute. 2021, vol. 248, pp. 209–222. [In Russ]. DOI: 10.31897/PMI.2021.2.5.

10. Aleksandrova T., Nikolaeva N., Lieberwirth H., Aleksandrov A. Selective disintegration and concentration: theory and practice. E3S Web of Conferences. — EDP Sciences. 2018, vol. 56, 03001. DOI: 10.1051/e3sconf/20185603001.

11. Artemiev D. S., Krymskij R. SH., Belyackij B. V., Ashihmin D. S. The age of mineralization of Mayskoe gold ore deposit (Central Chukotka): results of Re-Os isotopic dating. Journal of Mining Institute. 2020, vol. 243, pp. 266–278. [In Russ]. DOI: 10.31897/ pmi.2020.3.266.

12. Kirjavainen V. M. Review and analysis of factors controlling the mechanical flotation of gangue minerals. International journal of mineral processing. 1996, vol. 46, no. 1–2, pp. 21–34. DOI: 10.1016/0301–7516(95)00057–7.

13. O’Connor C., Alexandrova T. The geological occurrence, mineralogy, and processing by flotation of platinum group minerals (PGMs) in South Africa and Russia. Minerals. 2021, vol. 11, no. 1, p. 54. DOI: 10.3390/min11010054.

14. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Study of enrichment of sulphide and oxidized ores of gold deposits of the Aldan Shield. Journal of Mining Institute. 2020, vol. 242, pp. 218–227. [In Russ]. DOI: 10.31897/pmi.2020.2.218.

15. Aleksandrova T. N., Talovina I. V., Duryagina A. M. Gold-sulphide deposits of the Russian Arctic zone: Mineralogical features and prospects of ore benefication. Geochemistry. 2020, vol. 80, no. 3, 125510. DOI: 10.1016/j.chemer.2019.04.006.

16. Matveeva T. N., Chanturiya V. A., Getman V. V., Karkeshkina A. Yu, Gromova N. K. Application of new composite reagent for flotation separation of target minerals in collective copper-molybdenum concentrate. MIAB. Mining Inf. Anal. Bull. 2021, no. 11, pp. 80–94. [In Russ]. DOI: 10.25018/0236_1493_2021_11_0_80.

17. Aleksandrova T. N., Romashev A. O., Kuznecov V. V. Development of methodical approach to determination of flotation ability of thin-encrusted sulphides. Obogashchenie rud. 2020, vol. 2, pp. 9–14. [In Russ]. DOI: 10.17580/or.2020.02.02.

18. Islamov S., Grigoriev A., Beloglazov I., Savchenkov S., Gudmestad O. T. Research risk factors in monitoring well drilling — A case study using machine learning methods. Symmetry. 2021, vol. 13, no. 7, 1293. DOI: 10.3390/sym13071293.

19. Newcombe B., Akerstrom B., Jaques E. The effect of rotor speed on the flash flotation performance of Au and Cu in an industrial concentrator. Minerals Engineering. 2018, vol. 124, pp. 28–43. DOI: 10.1016/j.mineng.2018.04.020.

20. Kioresku А. V. Intensification of Bacterial-Chemical Leaching of Nickel, Copper and Cobalt from Sulfide Ores Using Microwave Radiation. Journal of Mining Institute. 2019, vol. 239, pp. 528–535. [In Russ]. DOI: 10.31897/pmi.2019.5.528.

21. Zharolla N. D., Ergeshev A. R., Ignatkina V. A. Estimation of selectivity of sulfhydryl collectors on a dithiophosphate basis. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 14–26. [In Russ]. DOI: 10.25018/0236–1493–2020–11–0–14–26.

22. Yushina T. I., Malyshev O. A., Shchelkunov S. A. Flotation of gold-bearing ores of non-ferrous metals using acetylene-based reagents. Tsvetnye Metally. 2017, no. 2, pp. 13–19. [In Russ]. DOI: 10.17580/tsm.2017.02.

23. Lavrinenko A. A., Makarov D. V., Shrader E. A., Sarkisova L. M. Enhancing selectivity of sulphide and flotation silicate separation during enrichment of low-sulphide platinummetal ore. Scientific basis and practice of ore and technogenic raw material processing. 2019, pp. 112–116. [In Russ].

24. Kuznecova I. N., Lavrinenko A. A., Shrader E. A., Sarkisova L. M. Reduction of flotation silicates extraction into the collective concentrate during flotation of low-sulfide platinum-metal ore. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 200–208. [In Russ]. DOI: 10.25018/0236–1493–2019–05–0–200–208.

25. Yang B., Yin W., Zhu Z., Wang D., Han H., Fu Y., Sun H., Chu F., Yao J. A new model for the degree of entrainment in froth flotation based on mineral particle characteristics. Powder Technology. 2019, vol. 354, pp. 358–368. DOI: 10.1016/j.powtec.2019.06.017.

26. Deng J., Yang S., Liu C., Li H. Effects of the calcite on quartz flotation using the reagent scheme of starch/dodecylamine. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019, vol. 583, 123983. DOI: 10.1016/j.colsurfa.2019.123983.

27. Shumilova L. V., Kostikova O. S. Sulfidization of silver-polymetallic ores of «Goltsovoe» deposit for decreasing loss of silver in mill tailings. Journal of Mining Institute. 2018, vol. 230, pp. 160–166. [In Russ]. DOI: 10.25515/pmi.2018.2.160.

28. Bragin V. I., Burdakova E. A., Usmanova N. F., Kinyakin A. I. Comprehensive assessment of flotation reagents by their influence on metal losses and flotation selectivity. Izvestiya. Non-Ferrous Metallurgy. 2021, vol. 27, no. 5, pp. 4–12. [In Russ]. DOI: 10.17073/0021–3438–2021–5–4–12.

29. Chanturia V. A., Matveeva T. N., Ivanova T. A., Gromova N. K., Lantsova L. B. New complexing agents to select auriferous pyrite and arsenopyrite. Journal of Mining Science. 2011, no. 1, pp. 81–89. [In Russ]. DOI: 10.1134/S1062739147010126.

30. Pugh R. J. Macromolecular organic depressants in sulphide flotation — A review, 1. Principles, types and applications. International Journal of Mineral Processing. 1989, vol. 25, no. 1–2, pp. 101–130. DOI: 10.1016/0301–7516(89)90059–8.

31. Pugh R. J. Macromolecular organic depressants in sulphide flotation — A review, 2. Theoretical analysis of the forces involved in the depressant action. International Journal of Mineral Processing. 1989, vol. 25, no. 1–2, pp. 131–146. DOI: 10.1016/0301–7516(89)90060–4.

32. Cao M., Liu Q. Reexamining the functions of zinc sulfate as a selective depressant in differential sulfide flotation — The role of coagulation. Journal of colloid and interface science. 2006, vol. 301, no. 2, pp. 523–531. DOI: 10.1016/j.jcis.2006.05.036.

33. Sazonov A. M., Zvyagina E. A., Silyanov S. A., Lobanov K. V., Leontev S. I., Kalinin Y. A., Savichev A. A., Tishin P. A. Ore genesis of the Olimpiada gold deposit (Yenisei ridge, Russia). Geosphere Studies. 2019, no. 1, pp. 17–43. [In Russ]. DOI: 10.17223/25421379/9/2.

34. Neethling S. J., Cilliers J. J. The entrainment of gangue into a flotation froth. International Journal of Mineral Processing. 2002, vol. 64, no. 2–3, pp. 123–134. DOI: 10.1016/S0301–7516(01)00067–9.

35. Ahmadi M., Gharabaghi M., Abdollahi H. Effects of type and dosages of organic depressants on pyrite floatability in microflotation system. Advanced Powder Technology. 2018, vol. 29, no. 12, pp. 3155–3162. DOI: 10.1016/j.apt.2018.08.015.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.