Effect of tailings storage facility on surface water at copper–pyrite deposit

The studies into the ecological problems connected with underground and surface water during decommissioning of sulfide-bearing storages of mineral waste are described. The article presents the estimate of the manmade impact produced on the nature components by the pyrite tailings storage under decommissioning at Gai Mining-and-Processing Plant. The ecological impact of the tailings storage was evaluated using the monitoring data of the tailings storage area, including sampling of solid waste at the processing factory and piled in the area of the tailings storage facility, sampling of liquid waste, drainage water and natural water subjected to pollution. The samples were sent for the mineral and chemical analyses at an accredited laboratory of the Mining University. Based on the analysis results of the samples, the hydrochemical pollution envelopes are plotted. The possible sources of drainage water containing heavy metals, the level of exposure and the scale of pollution in the areas adjacent to the tailings storage facility are identified. The elution mechanism of heavy metals from tailings and the directions of their migration with drainage water to the recycling water supply ponds is determined. It has been concluded on the necessity of the environmental activities connected with isolation of the manmade deposit as heightened ecological hazard source. To this effect, the methods of treatment of drainage water containing higher concentrations of heavy metals are proposed.

Keywords: copper–pyrite deposit, pyrite, tailings storage, drainage water treatment, quarry water treatment, surface water pollution, settling ponds, manmade deposit.
For citation:

Plokhov A. S., Kharko P.A., Pashkevich M. A. Effect of tailings storage facility on surface water at copper–pyrite deposit. MIAB. Mining Inf. Anal. Bull. 2021;(4):57-68. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_57.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 57-68
ISBN: 0236-1493
UDK: 504.054
DOI: 10.25018/0236_1493_2021_4_0_57
Article receipt date: 22.01.2020
Date of review receipt: 23.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

A.S. Plokhov1, Graduate Student, e-mail: alexander270594@gmail.com,
P.A. Kharko1, Graduate Student,
M.A. Pashkevich1, Dr. Sci. (Eng.), Professor,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.S. Plokhov, e-mail: alexander270594@gmail.com.

Bibliography:

1. Gosudarstvennyy doklad «O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2016 godu» [State report «On the state and protection of the environment of the Russian Federation in 2016»], Moscow, Minprirody Rossii; NIA-Priroda, 2017, pp. 760. [In Russ].

2. Adushkin V. V. The main factors of open mining impact on the environment. Gornyi Zhurnal. 1996, no 4, pp. 49—55. [In Russ].

3. Beresnevich P. V. Okhrana okruzhayushchey sredy pri ekspluatatsii khvostokhranilishch [Environmental protection in the operation of tailings], Moscow, Nedra, 1993.

4. Aksenov S. G., Zhabovsky V. P. Safety problems of waste storage tanks (tailings, sludge dumps and hydro dumps) of industrial enterprises and ways to increase their sustainable performance. Chetvertyy mezhdunarodnyy simpozium «Osvoenie mestorozhdeniy mineral'nykh resursov i podzemnoe stroitel'stvo v slozhnykh gidrogeologicheskikh usloviyakh» [Fourth International Symposium «Development of Mineral Resources and Underground Construction in complex hydrogeological conditions»], Belgorod, VNII VIOGEM, 1997, pp. 127—132. [In Russ].

5. Okhrana prirody (SSOP). Pochvy. Metody otbora i podgotovki prob dlya khimicheskogo, bakteriologicheskogo, gel'mintologicheskogo analiza. GOST 17.4.4.02-2017 [Nature protection. Soils. Methods for sampling and preparation of soil for chemical, bacteriological, helmintological analysis. State Standart 17.4.4.02-2017], Moscow, Standartinform, 2018.

6. Voda. Obshchie trebovaniya k otboru prob. GOST 31861-2012 [Water. General requirements for sampling. State Standart 31861-2012], Moscow, Standartinform, 2019.

7. Metodika M-MVI-80-2008 Massovoy doli elementov v probakh pochv, gruntov i donnykh otlozheniyakh metodami atomno-emissionnoy i atomno-absorbtsionnoy spektrometrii [M-MVI-80-2008 Method for performing measurements of the mass fraction of elements in samples of soils and bottom sediments using atomic emission and atomic absorption spectrometry]. [In Russ].

8. Metodika M-MVI-539-03 Metodika vypolneniya izmereniy massovykh kontsentratsiy metallov: alyuminiya, zheleza, kadmiya, kobal'ta, margantsa, medi, nikelya, svintsa, titana, khroma, tsinka v pit'evoy, prirodnoy i stochnoy vode atomno-absorbtsionnym metodom s ETA [M-MVI-539-03 Methods of mass concentration measurements of metals: aluminum, iron, cadmium, cobalt, manganese, copper, nickel, lead, titanium, chromium, zinc in drinking, natural and waste water by atomic absorption method with ETA]. [In Russ].

9. Yue Sun, Dan Lv, Jiasheng Zhou, Xiaoxin Zhou, Zimi Lou, Shams Ali Baig, Xinhua Xu. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite. A comparative study. Chemosphere. 2017. Vol. 185. Pp. 452—461.

10. Domènech C., Canals À., Soler A., Sabanès A., Dumestre A. Evolution assessment of soils contaminated by roasted pyrite wastes. Procedia Earth and Planetary Science. 2017. Vol. 17. Pp. 432—435.

11. Li Z., Ma Z., van der Kuijp T. J., Yuan Z., Huang L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment. 2014. Vol. 468—469. Pp. 843—853.

12. Chen H., Teng Y., Lu S., Wang Y., Wang J. Contamination features and health risk of soil heavy metals in China. Science of the Total Environment. 2015. Vol. 512—513. Pp. 143—153.

13. Pashkevich M. A., etc. Ekologicheskie problemy megapolisov i promyshlennykh aglomeratsiy. Uchebnoe posobie [Environmental problems of megapolises and industrial agglomerations], Saint-Petersburg, SPGGI, 2010, pp. 203.

14. Shulenina Z. M., Bagrov V. V., Desyatov A. V., Zubkov A. A., Kamrukov A. S., Kolesnikov V.A., Konstantinov V. E., Ksenofontov B. S., Novikov D. O. Voda tekhnogennaya: problemy, tekhnologii, resursnaya tsennost' [Technogenic water: problems, technologies, resource value], Moscow, Iz-vo MGTU im. N.E. Baumana, 2015, 401 p.

15. Levkin N. D., Afanas'eva N. N., Malikov A. A., Rybak V. L. Wastewater treatment with natural sorbents. Izvestiya Tul’skogo gosudarstvennogo universiteta, Nauki o zemle. 2014, no 4, pp. 37—41. [In Russ].

16. Buzuku S., Kraslawski A. Application of morphological analysis to policy formulation for wastewater treatment. Journal of Mining Institute. 2015, no 214, pp. 102—108.

17. Matveeva V., Danilov A., Pashkevich M. Treatment of multi-tonnage manganese-containing waste water using vermiculite. Journal of Ecological Engineering. 2018. Vol. 19. No 1. Pp. 156—162.

18. Klimov E. S., Buzaeva M. V. Prirodnye sorbenty i kompleksony v ochistke stochnykh vod [Natural sorbents and complexons in waste water treatment], Ul'yanovsk: UlGTU, 2011, 201 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.