Effects of temperature field nonuniformity on strength of frozen wall in mine shafts

This article presents the quantitative analysis of spatial nonuniformity of frozen wall strength versus resultant thickness based on the Mohr–Coulomb failure criterion. The strength nonuniformity is caused by the nonuniformity of temperature field of the frozen wall. The calculation uses the limit values of long-term cohesion and internal friction angle obtained in experimental core tests of seven rock types. The core sampling was carried out at the industrial infrastructure of a potassium mine under construction in the Republic of Belarus. The onedimensional model computation shows that the temperature field nonuniformity of the frozen wall leads to the nonuniformity of its strength characteristics and results in the excessive minimum allowable thickness (required thickness) of the frozen wall as against the uniform field of temperatures of the same average value. The increment of the frozen wall thickness under nonuniform temperature in frozen rocks (at the maximum temperature variation of 10–12 °С) for seven test types of rocks lies in the range from 24 to 50%. The functional dependence of the required frozen wall thickness on the maximum temperature variation in frozen rocks is determined: this is a power law with an exponent of 0.5 for all test types of rocks.

Keywords: frozen wall, artificial ground freezing, static analysis, strength, Mohr–Coulomb criterion, nonuniform temperature field.
For citation:

Semin M. A., Brovka G. P., Pugin A. V., Bublik S. A., Zhelnin M. S. Effects of temperature field nonuniformity on strength of frozen wall in mine shafts. MIAB. Mining Inf. Anal. Bull. 2021;(9):79-93. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_79.


The study was supported by the Russian Science Foundation, Project No. 17-11-01204.

Issue number: 9
Year: 2021
Page number: 79-93
ISBN: 0236-1493
UDK: 622.253.3
DOI: 10.25018/0236_1493_2021_9_0_79
Article receipt date: 02.04.2021
Date of review receipt: 02.07.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

M.A. Semin1, Cand. Sci. (Eng.), Researcher, e-mail: seminma@inbox.ru,
G.P. Brovka, Dr. Sci. (Eng.), Assistant Professor, Head of the Laboratory, Institute of Nature Management of National Academy of Sciences, 220114, Minsk, Republic of Belarus,
A.V. Pugin1, Cand. Sci. (Phys. Mathem.), Researcher, e-mail: lyosha.p@gmail.com,
S.A. Bublik1, Graduate Student, Engineer, e-mail: serega-bublik@mail.ru,
M.S. Zhelnin, Graduate Student, Junior Researcher, Institute of Continuous Media Mechanics, Ural Branch of Russian Academy of Sciences, 614013, Perm, Russia, e-mail: zhelninmax@gmail.com,
1 Mining Institute, Ural Branch of Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

M.A. Semin, e-mail: seminma@inbox.ru.


1. Trupak N. G. Zamorazhivanie gruntov v podzemnom stroitel'stve [Ground freezing in underground construction], Moscow, Nedra, 1974.

2. Vakulenko I. S., Nikolaev P. V. Artificial ground freezing in underground construction: Analysis and development prospects. MIAB. Mining Inf. Anal. Bull. 2015, no. 3, pp. 338—346. [In Russ].

3. Shuplik M. N. Special methods in underground construction. MIAB. Mining Inf. Anal. Bull. 2013, no. 1, pp. 595—625. [In Russ].

4. Vyalov S. S. Prochnost' i polzuchest' merzlyh gruntov i raschety ledogruntovyh ograzhdeniy [Frozen soil strength and creep, and frozen wall design], Moscow, Izd-vo Akademii nauk SSSR, 1962, 253 p.

5. Levin L.Yu., Semin M. A., Plekhov O. A. Comparative analysis of existing calculation methods for frozen wall thickness in mine shafts under construction. PNRPU Construction and Architecture Bulletin. 2018, vol. 9, no. 4, pp. 93—103. [In Russ]. DOI: 10.15593/22249826/2018.4.09

6. Kim Y. S., Kang J.-M., Lee J., Hong S.-S., Kim K.-J. Finite element modeling and analysis for artificial ground freezing in egress shafts. KSCE Journal of Civil Engineering. 2012, vol. 16, no. 6, pp. 925–932.

7. Yang W.-H., Du Z.-B., Yang Z.-J., Bo D.-L. Plastic design theory of frozen soil wall based on interaction between frozen soil wall and surrounding rock. Chinese Journal of Geotechnical Engineering. 2013, vol. 35, no. 10. Pp. 1857–1862.

8. Zhang B., Yang W., Wang B. Plastic design theory of frozen wall thickness in an ultradeep soil layer considering large deformation characteristics. Mathematical Problems in Engineering. 2018, vol. 2018, article 8513413.

9. Wang Y. S., Yang Z., Yang W. Viscoelastic analysis of interaction between freezing wall and outer shaft wall in freeze sinking. The 6th International Conference on Mining Science & Technology. 2009, pp. 612—620.

10. Sanger F. J., Sayles F. H. Thermal and rheological computations for artificially frozen ground construction. Engineering Geology. 1979, vol. 13, pp. 311—337. DOI: 10.1016/00137952(79)90040-1.

11. Kostina A., Zhelnin M., Plekhov O., Panteleev I., Levin L., Semin M. An applicability of Vyalov’s equations to ice wall strength estimation. Frattura ed Integrità Strutturale. 2020, vol. 14, no. 53, pp. 394—405.

12. Zhelnin M., Kostina A., Plekhov O., Panteleev I., Levin L. Numerical analysis of application limits of Vyalov’s formula for an ice-soil thickness. Frattura ed Integrità Strutturale. 2019, vol. 13, no. 49, pp. 156—166.

13. Tsytovich N. A. Mekhanika merzlyh gruntov: uchebnoe posobie [Frozen soil mechanics: Educational aid], Moscow, Vysshaya shkola, 1973, 448 p.

14. Semin M. A., Bogomyagkov A. V., Levin L. Y. Theoretical analysis of frozen wall dynamics in transition to passive freezing regime. Journal of Mining Institute. 2020, vol. 243, pp. 319—328. [In Russ].

15. Levin L., Golovatyi I., Zaitsev A., Pugin A., Semin M. Thermal monitoring of frozen wall thawing after artificial ground freezing: Case study of Petrikov Potash Mine. Tunnelling and Underground Space Technology. 2021, vol. 107, article 103685.

16. Mellor M. Mechanical properties of rocks at low temperatures. 2nd International Conference on Permafrost. Yakutsk, International Permafrost Association. 1973, pp. 334—344.

17. Goughnour R. R., Andersland O. B. Mechanical properties of a sand-ice system. Journal of the Soil Mechanics and Foundations Division. 1968, vol. 94, no. 4, pp. 923—950.

18. Sayles F. H., Carbee D. L. Strength of frozen silt as a function of ice content and dry unit weight. Engineering Geology. 1981, vol. 18, no. 1—4, pp. 55—66.

19. Ting J. M., Torrence M. R., Ladd C. C. Mechanisms of strength for frozen sand. Journal of Geotechnical Engineering. 1983, vol. 109, no. 10, pp. 1286—1302.

20. Khakimov H. R. Voprosy teorii i praktiki iskusstvennogo zamorazhivaniya gruntov [Artificial ground freezing: Theory and practice], Moscow, Izd-vo Akademii nauk SSSR, 1957, 191 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.