Impact of borehole design on methane recovery efficiency in hydraulic fracturing

Coal seam gas drainage is an important tool to ensure labor safety of miners. The growing depth of coal mining reduces efficiency of this tool because of lower permeability of cracks in deeper level coal, which leads to weakened gas emission. It is possible to enhance gas recovery by way of various treatment of coal seams in order to stimulate the coal–borehole interface, to change the permeability of rocks using natural jointing and to create new systems of joints. As a gas drainage method, proppant-free hydraulic fracturing was tested in boreholes drilled in temporary roadways in Kirov Mine of SUEK-Kuzbass [1]. Completion of boreholes in coal seams is the same as in conventional gas reservoirs but needs an adjustment in view of the unique properties of coal. Some coal properties and problems connected with coal seam methane production are: crushability of coal; sensibility of joint systems to cementing or grouting, which results in formation of unwanted coal slack during injection and production; frequently increased pressure in jointed coal. One of the major point in risk assessment in hydrodynamic treatment is justification of borehole design (delineation of sealing zone and open face). At the present time, one of the main parameters of a borehole is the sealing length of 35 m, while hydraulic treatment is carried out in the uncased borehole interval 2 to 7 m long [2]. This study aimed to justify the borehole design based on the comparison of hydrodynamic models of coal seam areas with and without treatment. It was necessary to adapt gas recovery volumes from the reference model and the model with hydraulic fracturing, and to compare the gas recovery volumes in different injection schemes. The modeling used software TNavigator.

Keywords: hydraulic fracturing (HF), coal seam methane (CSM), well log survey (WLS), pressure, modeling, gas drainage, parameters, design, efficiency.
For citation:

Kolikov K. S., Phan Tuan Anh, Khusainov R. A., Matniazova G. I. Impact of borehole design on methane recovery efficiency in hydraulic fracturing. MIAB. Mining Inf. Anal. Bull. 2022;(12):152-165. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_152.

Issue number: 12
Year: 2022
Page number: 152-165
ISBN: 0236-1493
UDK: 622.817.47
DOI: 10.25018/0236_1493_2022_12_0_152
Article receipt date: 01.07.2022
Date of review receipt: 15.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

K.S. Kolikov1, Dr. Sci. (Eng.), Assistant Professor, Head of Chair, е-mail:,
Phan Tuan Anh1, Graduate Student, е-mail:,
R.A. Khusainov2, Graduate Student, е-mail:,
G.I. Matniazova3, Graduate Student, е-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia,
2 Gubkin Russian State University of Oil and Gas (National Research University), 119991, Moscow, Russia.


For contacts:

K.S. Kolikov, e-mail:


1. Yutyaev E. P. Obosnovanie tekhnologii intensivnoy podzemnoy razrabotki vysokogazonosnykh ugol'nykh plastov [Substantiation of the technology of intensive underground mining of high-gas-bearing coal seams], Doctor’s thesis, Kemerovo, KuzGTU, 2019, 46 p.

2. Slastunov S. V., Mazanik E. V., Ponizov A. V., Smetanin V. S. Methods of conducting mine experimental tests of the technology of advanced degassing of the Podpolenovsky satellite formation using hydraulic fracturing of the carboniferous strata. Pridneprovskiy nauchnyy vestnik. 2017, vol. 4, no. 11, pp. 72—83. [In Russ].

3. Clarkson C. R., Jordan C. L. Gierhart R. R., Seidle J. P. Production data analysis of coalbed-methane wells. SPE Reservoir Evaluation & Engineering. 2008, vol. 02, pp. 311—325. DOI: 10.2118/107705-PA.

4. Grigoriev G. A., Afanasyeva T. A. Prospects of industrial development of unconventional gas resources in Russia. Neftegazovaya Geologiya. Teoriya I Praktika. 2012, vol. 7, no. 2. [In Russ].

5. Pavlyukov N., Melikov R., Pavlov V., Ptashniy A., Stepanov A., Kalabin A., Kuzovkov A., Gordeev A., Arzhilovskiy A., Samoilov M., Matveev D., Prokhorov A., Khamidov T., Korolev A., Loznyuk O., Shaybakov R., Gabuniya G. An integrated approach for planning of multistage hydraulic fracturing in low-permeability gas-saturated reservoirs with natural fractures. Society of Petroleum Engineers. SPE Russian Petroleum Technology Conference RPTC 2019. Moscow, 2019. DOI: 10.2118/196904-MS.

6. Keibal A. V., Khaydina M. P. Exit to self-sufficiency of advance degassing of coal seams: «pro et contra». Russian Mining Industry Journal. 2014, no. 4(116), pp. 82—88. [In Russ].

7. Chaohua Guo, Rongji Li, Jiwen Sun, Xin Wang, Hongji Liu A review of gas transport and adsorption mechanisms in two-component methane-carbon dioxide system. International Journal of Energy Research. 2020, vol. 44, no. 4, pp. 2499—2516.

8. Zakharov V. N., Ulyanova E. V., Malinnikova O. N., Pashichev B. N. Effect of petrographic composition on coal ability to retain methane. MIAB. Mining Inf. Anal. Bull. 2021, no. 12, pp. 88—98. [In Russ]. DOI: 10.25018/0236_1493_2021_12_0_88.

9. Turnadge Ch., Mallants D., Peeters L. Overview of aquitard and geological fault simulation approaches in regional scale assessments of coal seam gas extraction impacts. Affiliation: CSIRO, 2018, pp. 20—120.

10. Balmasov N. N., Baranchugov V. K., Bykadorov V. S., etc. Mineral'no-syr'evaya baza ugol'noy promyshlennosti. T. 1 [Mineral resource base of the coal industry, vol. 1], Moscow, Izd-vo MGGU, 1999, 633 p.

11. Timofeev Yu. L., Lyapkov D. P., Keibal A. V., Keibal A. A., Kozlova A. N. Some aspects of completion of obliquely directed methane-coal wells drilled along the productive formation. Tekhnologii nefti i gaza. 2011, no. 2, pp. 50—58. [In Russ].

12. Clarkson R. C. R., Bustin R. M. M. Coalbed methane: Current field-based evaluation methods. SPE Reservoir Evaluation & Engineering. 2011, vol. 14, no. 01, pp. 60—75. DOI: 10.2118/131791-PA.

13. Naiks S., Yang S., Bedrikovetsky P., Woolley M. Analytical modeling of the water block phenomenon in hydraulically fractured wells. Journal of Natural Gas Science and Engineering. 2019, vol. 62, pp. 56—70. DOI: 10.1016/j.jngse.2019.04.018.

14. Chaohua Guo, Rongji Li, Jiwen Sun, Xin Wang, Hongji Liu A review of gas transport and adsorption mechanisms in two-component methane-carbon dioxide system. International Journal of Energy Research. 2020, vol. 44, no. 4, pp. 2499—2516. DOI: 10.1002/er.5114.

15. Harms W. M., Scott E. Patent US-0850729 (1992-03-13) Method for stimulating methane production from coal seams.

16. Qin Y., Wu J., Li G., Wang Y., Shen J., Zhang B., Shen Y. Patterns and pilot project demonstration of coal measures gas production. Metan Xuebao. Journal of the China Coal Society. 2020, vol. 45. pp. 2513—2522. DOI: 10.13225/j.cnki.jccs.DZ20.0621.

17. Zheng L., Tao X., Wei P., Wu T., Liu H., Cao Z. Multi-reservoir production damage physical simulation system and its application in coal-measure gas production. Metan Xuebao. Journal of the China Coal Society. 2021, vol. 46, рp. 2501—2509. DOI: 10.13225/j.cnki.jccs. CB21.0808.

18. Chen S., Liu Y., Zhang J., Li P., Tang X., Li Z., Dong Z., Xu L., Zhao X. Formation conditions and evolution of fractures in multiple tight rocks: Implications for unconventional reservoir exploitation. Journal of Petroleum Science and Engineering. 2021, vol. 200, article 108354, pp. 30—35. DOI: 10.1016/j.petrol.2021.108354.

19. Koroleva V. N., Zakharova A. A. Possible ways to increase the efficiency of methane extraction from the coal-bearing strata. MIAB. Mining Inf. Anal. Bull. 2011, no. S1, pp. 221—226. [In Russ].

20. Koroleva V. N. Nauchnoe obosnovanie i razrabotka tekhnologicheskikh resheniy po povysheniyu bezopasnosti gornykh rabot na baze effektivnoy degazatsii s utilizatsiey metana na osnove gazogidratnykh protsessov [Scientific substantiation and development of technological solutions to improve the safety of mining operations based on effective degassing with methane utilization based on gas hydrate processes], Doctor’s thesis, Moscow, MGGU, 2005, 44 p.

21. Slastunov S. V., Ponizov A. V., Sadov A. P., Khautiev N. P. Hydraulic separation of coal seams for their effective degassing preparation through underground wells. MIAB. Mining Inf. Anal. Bull. 2020, no. 6-1, pp. 15—25. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-15-25.

22. Slastunov S. V., Mazanik E. V., Sadov A. P. New technological solutions in the field of preliminary degassing based on active impacts on the coal seam from underground workings. MIAB. Mining Inf. Anal. Bull. 2016, special edition 1, pp. 107—117. [In Russ].

23. Slastunov S. V., Yutyaev E. P., Mazanik E. V., Sadov A. P., Ponizov A. V. Mine tests of improved technology of underground reservoir degassing using hydraulic fracturing. Ugol'. 2016, no. 11, pp. 32—37. [In Russ]. DOI: 10.18796/0041-5790-2016-11-32-37.

24. Slastunov S. V., Yutyaev E. P., Mazanik E. V., Sadov A. P. Development and improvement of reservoir degassing technologies for efficient and safe mining of coal seams. MIAB. Mining Inf. Anal. Bull. 2018, special edition 49, pp. 13—22. [In Russ]. DOI: 10.25018/0236-14932018-11-49-13-22.

25. Mazanik E. V., Ponizov A. V., Sadov A. P., Slastunov S. V. Improved technology of preliminary degassing of coal seams based on their hydraulic fracturing. Znanie. 2016, no. 5-1(34), pp. 111—116. [In Russ].

26. El'kin V. S. Razrabotka tekhnologicheskikh skhem otrabotki moshchnykh pologikh ugol'nykh plastov na gazovykh shakhtakh [Development of technological schemes for mining powerful shallow coal seams in gas mines], Candidate’s thesis, Saint-Petersburg, SPbGU, 2012, 21 p.

27. Lupiy M. G. Obosnovanie tekhnologii kompleksnoy degazatsii vyemochnykh uchastkov pri vysokointensivnoy razrabotke gazonosnykh ugol'nykh plastov [Substantiation of the technology of complex degassing of excavation sites during high-intensity development of gas-bearing coal seams], Candidate’s thesis, Moscow, MGGU, 2010, 23 p.

28. Matniazova G. I., Troeglazova A., Khaydina M. P., Assessment of the influence of interlayers of host rocks with low permeability on the extraction of methane from coal deposits. Science and Technology in the Gas Industry. 2018, no. 3(75), pp. 31—41. [In Russ].

29. Lavrukhin E. V., Karsanina M. V., Izmailov A. F., Gerke K. M. Increasing the volume of numerical modeling at the pore scale: the method of subdivision into subcubes when allocating pig-network models. NEFTEGAZ.RU. 2019, no. 7(91), pp. 70—75. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.