Study of the effect of blasted rock mass parameters on the performance of excavator-automobile complex

The paper establishes the dependencies of the influence of the parameters of the exploded rock mass (VGM) – average weighted piece, homogeneity index and output of substandard piece, on the productivity of the excavator-automotive complex (EAC) on the EAK performance on the example of the WK-35 high-capacity electric Rope Shovel excavator with a bucket capacity of 35 m3 and the CAT 793D heavy-duty dump truck with a load capacity of 220 tons. Quality indicators of blasting preparation of the massif for excavation, determine the main operational characteristics of EAK – downtime and productivity, it is important to consider when selecting the parameters of drilling and blasting operations and optimization of blasting projects. By the method of cyclic photo and video recording of the blasted block face, the data were obtained to establish the distribution of the VGM output, loading cycle time and loading degree of the dump truck. During image processing by the photoplanimetry method, the average weighted piece of the VGM, the percentage of the output of the substandard piece and the homogeneity index of the grading structure were determined. By the method of visual processing of images with the subsequent data verification from the system of dispatching of the open pit we obtained the indicators of productivity of EAK WK-35 and CAT 793D. By regression and correlation analysis methods, the dependences affecting the EAK productivity during loading and the parameters of the VGM, allowing to ensure its high productivity in the conditions of overburden mining in the gold ore deposit, were established.

Keywords: drilling and blasting operations, excavation, blasted rock mass, performance, excavator WK-35, dump truck CAT 793D, excavator-automobile complex, fragmentation, uniformity index, substandard fraction.
For citation:

Marinin M. A., Rakhmanov R. A., Dolzhikov V. V., Sushkova V. I. Study of the effect of blasted rock mass parameters on the performance of excavator-automobile complex. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):35-48. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_35.

Issue number: 9
Year: 2023
Page number: 35-48
ISBN: 0236-1493
UDK: 622.22
DOI: 10.25018/0236_1493_2023_91_0_35
Article receipt date: 29.06.2023
Date of review receipt: 09.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

M.A. Marinin1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-5575-9343,
R.A. Rakhmanov, Cand. Sci. (Eng.), Researcher, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, e-mail:, ORCID ID: 000-0002-5341-2274,
V.V. Dolzhikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0001-8851-2913,
V.I. Sushkova1, Leading Specialist, e-mail:,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

M.A. Marinin, e-mail:


1. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 11, pp. 1306—1311.

2. McKee D. Understanding mine to mill. Brisbane Australia: Cooperative research centre for optimising resource extraction, 2013, 96 p.

3. Cameron P., Drinkwater D., Pease J. The ABC of Mine to Mill and metal price cycles. Proceedings of 13th AusIMM Mill Operators’ Conference. Melbourne, the Australasian Institute of Mining and Metallurgy. 2016, pp. 349—358.

4. Marinina O. A., Kirsanova N. Y., Nevskaya M. A. Circular economy models in industry: developing a conceptual framework. Energies. 2022, vol. 15, no. 24, pp. 9376—9386. DOI: 10.3390/en15249376.

5. Napier-Munn T. Is progress in energy-efficient comminution doomed? Minerals Engineering. 2015, vol. 73, pp. 1—6. DOI: 10.1016/j.mineng.2014.06.009.

6. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 40—56. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_40.

7. Zharikov I. F., Seinov N. P. About the preparation sveby smyrofor mass for schema cyclepotry technology. Explosion Technology. 2020, no. 126/83, pp. 16—27. [In Russ].

8. Egorov V. V., Volokitin A. N., Ugolnikov N. V., Sokolovskiy A. V. Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness. Russian Mining Industry Journal. 2021, no. 3, pp. 110—115. [In Russ]. DOI: 10.30686/1609-9192-20213-110-115.

9. Isheiskiy V. A., Martynushkin E. A., Vasiliev A. S., Smirnov S. A. Data collection features of during the blast wells drilling for the formation of geostructural block models. Sustainable Development of Mountain Territoriesthis. 2021, vol. 13, no. 4(50), pp. 608—619. [In Russ]. DOI: 10.21177/1998-4502-2021-13-4-608-619.

10. Gospodarikov A. P., Kirkin A. P., Trofimov A. V., Kovalevsky V. N. Determination of physical and mechanical properties of rocks using anti-burst destress easures. Gornyi Zhurnal. 2023, no. 1, pp. 26—34. [In Russ]. DOI: 10.17580/gzh.2023.01.04.

11. Afanasev P. I., Menzhulin M. G. Change in the average lump size in the crushing zone based on the calculation of energy dissipation. News of the Tula state university. Sciences of Earth. 2022, no. 4, pp. 408—419. [In Russ].

12. Afanasev P. I., Makhmudov K. F. Assessment of the parameters of a shock wave on the wall of an explosion cavity with the refraction of a detonation wave of emulsion explosives. Applied Sciences. 2021, vol. 11, no. 9, article 3976. DOI: 10.3390/app11093976.

13. Yastrebova K., Moldovan D., Chernobay V. Influence of the nature of the outflow of explosion products from blast holes and boreholes on the efficiency of rock destruction. E3S Web of Conferences. 2020, vol. 174, no. 4, article 01017. DOI: 10.1051/e3sconf/202017401017.

14. Repin N. Y., Repin L. N. Vyemochno-pogruzochnye raboty [Excavation and loading works], Moscow, Izd-vo «Gornaya kniga», 2012, 267 p., available at: book/ISBN9785986723174.html.

15. Koteleva N. I., Khokhlov S. V., Frenkel I. A. Digitalization in open-pit mining. A new approach in monitoring and control of rock fragmentation. Applied Sciences. 2021, vol. 11, no. 22, article 10848. DOI: 10.3390/app112210848.

16. Makharatkin P. N., Abdulaev E. K., Vishnyakov G. Y., Botyan E. Y., Pushkarev A. E. Increase of efficiency of dump trucks functioning on the basis of justification of their rational speed by means of simulation modeling. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

17. Yakovlev V. L., Glebov A. V., Bersenyov V. A., Kulniyaz S. S., Ligotskiy D. N. Influence of an installation angle of the conveyor lift on the volumes of mining and preparing work at quarries at the cyclic-flow technology of ore mining. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2020, vol. 4, no. 442, pp. 127—137. DOI: 10.32014/2020.2518-170X.93.

18. Jethro M. A., Shehu S. A., Kayode T. S. Effect of fragmentation on loading at Obajana Cement Company Plc, Nigeria. International Journal of Scientific & Engineering Research. 2016, vol. 7, no. 4, pp. 608—620.

19. Singh S. P., Narendrula R. Factors Affecting the productivity of loaders in surface mines. International Journal of Surface Mining, Reclamation and Environment. 2006, vol. 20, no. 1, pp. 20—32. DOI: 10.1080/13895260500261574.

20. Manyele S. Investigation of excavator performance factors in an open-pit mine using loading cycle time. Engineering. 2017, vol. 9, pp. 599—624. DOI: 10.4236/eng.2017.97038.

21. Doktan M. Impact of blast fragmentation on truck shovel fleet performance. 17th International Mining Congress and Exhibition of Turkey. 2001, pp. 375—379.

22. Tosun A., Konak G., Karakus D., Onur A. H., Toprak T. Investigation of the relationship between blasting pile density and loader productivity. Rock Fragmentation by Blasting. 2012, pp. 385—389. DOI: 10.1201/b13759-48.

23. Dey S., Mandal S. K., Bhar C. Application of MR and ANN in the prediction of the shovel cycle time, thereby improving the performance of the shovel-dumper operation—A case study. Journal of the Southern African Institute of Mining and Metallurgy. 2022, vol. 122, no. 10, pp. 597—606. DOI: 10.17159/2411-9717/1075/2022.

24. Brunton I., Thornton D., Hodson R., Sprott D. Impact of blast fragmentation on hydraulic excavator dig time. Paper presented at the 5th Large Open Pit Conference. 2003, pp. 39—48.

25. Beyglou A., Johansson D., Schunnesson H. Target fragmentation for efficient loading and crushing — the Aitik case. Journal of the Southern African Institute of Mining and Metallurgy. 2017, vol. 117, no. 11, pp. 1053—1062. DOI: 10.17159/2411-9717/2017/v117n11a10.

26. Isheyskiy V., Martinyskin E., Smirnov S., Vasilyev A., Knyazev K., Fatyanov T. Specifics of MWD data collection and verification during formation of training datasets. Minerals. 2021, vol. 11, no. 8, article 798. DOI: 10.3390/min11080798.

27. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020, vol. 242, pp. 228—233. [In Russ]. DOI: 10.31897/pmi.2020.2.228.

28. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020, vol. 241, pp. 10—21. [In Russ]. DOI: 10.31897/pmi.2020.1.10.

29. Velikanov V. S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model. Journal of Mining Institute. 2020, vol. 241, pp. 29—36. [In Russ]. DOI: 10.31897/pmi.2020.1.29.

30. Lange I., Kotiukov P., Lebedeva Y. Analyzing physical-mechanical and hydrophysical properties of sandy soils exposed to long-term hydrocarbon contamination. Sustainability. 2023, vol. 15, no. 4, article 3599. DOI: 10.3390/su15043599.

31. Kutepova N. A., Moseykin V. V., Kondakova V. N., Pospehov G. B., Straupnik I. A. Specificity of properties of coal processing waste regarding their storage. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 77—93. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_77.

32. Dotto M. S., Pourrahimian Y. Effects of fragmentation size distribution on truck-shovel productivity. Mining Optimization Laboratory. 2018, pp. 335—342.

33. Get’man S. V. Operational experience of WK series excavators manufactured by Taiyuan Heavy Machinery Plant TZ. Russian Mining Industry Journal. 2013, no. 2, pp. 88—91. [In Russ].

34. Khoreshok A. A., Dubinkin D. M., Markov S. O., Tyulenev M. A. Estimation of the degree of mutual influence of the excavator bucket capacity and haul truck body. Bulletin of the Kuzbass State Technical University. 2021, no. 3(145), pp. 104—112. [In Russ]. DOI: 10.26730/199941252021-3-104-112.

35. Marinin M. A., Rakhmanov R. A., Alenichev I. A., Afanasyev P. I., Sushkova V. I. Effect of grain size distribution of blasted rock on WK-35 shovel performance. MIAB. Mining Inf. Anal. Bull. 2023, no. 6, pp. 111—125. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_111.

36. Saadoun A., Fredj M., Boukarm R., Hadji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): a comparative study. Journal of Mining Institute. 2022, vol. 257, pp. 822—832. [In Russ]. DOI: 10.31897/pmi.2022.84.

37. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/pmi.2021.3.2.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.