Effect of transient processes on technical performance of compressed air production and handling systems in mines

Compressed air is a safe and versatile energy carrier in mining enterprises. However, centralized systems for the production and transportation of compressed air have low efficiency due to the presence of branched air networks with technological losses of compressed air, and compressor stations that produce compressed air to maintain pressure in the pneumatic network at a given level without taking into account the operating modes of pneumatic equipment. Creating effective systems for the production, distribution and consumption of compressed air requires the implementation of an intelligent automatic control system based on energy-efficient algorithms that predetermine the required system parameters with the lowest cost for the production of compressed air. The implementation of this concept is possible through the use of mathematical simulation modeling using specialized software products. This article discusses schemes for classifying quantities and parameters of sections of a compressed air production and distribution system, and develops an algorithmic structure of the scheme, which is implemented in a mathematical model in the Matlab Simulink program. The results of simulation modeling showed wide possibilities for increasing the efficiency of existing systems for the production and distribution of compressed air by using the accumulating capacity of pneumatic networks and rational control of turbine units at the compressor station.

Keywords: compressed air, compressor station, mine pneumatic network, simulation modeling, algorithm, control, optimization, mathematical model.
For citation:

Kopachev V. F., Kopacheva E. A. Effect of transient processes on technical performance of compressed air production and handling systems in mines. MIAB. Mining Inf. Anal. Bull. 2025;(1-1):106-119. [In Russ]. DOI: 10.25018/0236_1493_2025_11_0_106.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 106-119
ISBN: 0236-1493
UDK: 621.6-52
DOI: 10.25018/0236_1493_2025_11_0_106
Article receipt date: 18.09.2024
Date of review receipt: 06.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

V.F. Kopachev1, Dr. Sci. (Eng.), Professor, e-mail: u1331@yandex.ru, ORCID ID: 0000-0002-8241-8114,
E.A. Kopacheva1, Lector, e-mail: Kopacheva.E@m.ursmu.ru, ORCID ID: 0009-0006-1407-4950,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

V.F. Kopachev, e-mail: u1331@yandex.ru.

Bibliography:

1. Cabello Eras J. J., Sagastume Gutiérrez A., Sousa Santos V., Cabello Ulloa M. J. Energy management of compressed air systems. Assessing the production and use of compressed air in industry. Energy. 2020, vol. 213, article 118662. DOI: 10.1016/j.energy.2020.118662.

2. Nehler T. Linking energy efficiency measures in industrial compressed air systems with nonenergy benefits — a review. Renew and Sustain Energy Reviews. 2018, vol. 89, pp. 72—87. DOI: 10.1016/j.rser.2018.02.018.

3. Saidur R., Rahim N. A., Hasanuzzaman M. A review on compressed-air energy use and energy savings. Renew Sustain Energy Reviews. 2010, vol. 14, no. 4, pp. 1135—1153. DOI: 10.1016/j. rser.2009.11.013.

4. Mousavi S., Kara S., Kornfeld B. Energy efficiency of compressed air systems. Procedia CIRP. 2014, vol. 15, pp. 313—318. DOI: 10.1016/j.procir.2014.06.026.

5. Minyaev Yu. N. Energy losses in pneumatic systems of mine compressor units. News of the Ural State Mining University. 2003, no. 16, pp. 44—46. [In Russ].

6. Zhukovskiy Yu. L., Lavrik A. Yu., Semenyuk A. V., Vasilkov O. S. Potential for electric consumption management in the conditions of an isolated energy system in a remote population. Sustainable Development of Mountain Territories. 2020, vol. 12, no. 4(46), pp. 583—591. [In Russ]. DOI: 10.21177/1998-4502-2020-12-4-583-591.

7. Goldberg A., Reinaud J., Taylor R. P. Promotion systems and incentives for adoption of energy management systems in industry. Institute for Industrial Productivity, 2011, 36 p.

8. La T. Don't let compressed air blow away your profits. Energy Engineering. 2013, vol. 111, no. 1, pp. 7—15. DOI: 10.1080/01998595.2013.10769725.

9. Abdelaziz E. A. Saidur R., Mekhilef S. A review on energy saving strategies in industrial sector. Renew Sustain Energy Reviews. 2011, vol. 15, no. 1, pp. 150—168. DOI: 10.1016/j.rser.2010.09.003.

10. Marshall R. C. Optimization of single-unit compressed air systems. Energy Engineering. 2012, vol. 109, no. 1, pp. 10—35. DOI: 10.1080/01998595.2012.1043657.

11. McKane A., Hasanbeigi А. Motor systems energy efficiency supply curves. A methodology for assessing the energy efficiency potential of industrial motor systems. Energy Policy. 2011, vol. 39, no. 10, pp. 6595—6607. DOI: 10.1016/j.enpol.2011.08.004.

12. Palyanitsin P. S., Petrov P. A., Bazhin V. Yu. On the issue of resource and energy saving in the production of corundum. Proceedings of Irkutsk State Technical University. 2020, vol. 24, no. 6 (155), pp. 1347—1356. [In Russ].

13. Kopachev V. F., Kopacheva E. A. Rational algorithms for controlling a compressed air production system. Tekhnologicheskoe oborudovanie dlya gornoy i neftegazovoy promyshlennosti [Technological equipment for the mining and oil and gas industry], Ekaterinburg, 2024, pp. 81—84. [In Russ].

14. Slobodchikov K. Yu. Algorithms for controlling the compressor shop mode in the distributed structure of a software controller. Eastern-European journal of enterprise technologies. 2009, vol. 3, no. 3 (39), pp. 30—37. [In Russ].

15. Tsvetkov V. Ya., Buravtsev A. V. Metrics of a complex deterministic system. Ontology of Designing. 2017, vol. 7, no. 3(25), pp. 334—346. [In Russ]. DOI: 10.18287/2223-9537-2017-7-3-334-346.

16. Mikheeva T. V. Review of existing software tools for simulation modeling in the study of the mechanisms of functioning and control of production systems. Izvestiya of Altai state university. 2009, no. 1(61), pp. 87—90. [In Russ].

17. Batitskiy V. A., Kuroedov V. I., Ryzhkov A. A. Avtomatizatsiya proizvodstvennykh protsessov i ASU TP v gornoy promyshlennosti [Automation of production processes and automated process control systems in the mining industry], Moscow, Nedra, 1991, 303 p.

18. Kryukov O. V., Gulyaev I. V., Sychev M. N., Sychev N. I., Erazumov M. I. Energoeffektivnost' i avtomatizatsiya elektrooborudovaniya kompressornykh stantsiy [Energy efficiency and automation of electrical equipment of compressor stations], Vologda, 2022, 548 p.

19. Shabaev O. E., Nechepaev V. G., Bridun I. I., Zinchenko P. P. Mathematical model of the formation of rock mass flows by combines with small-diameter auger executive bodies. Minerals and Mining Engineering. 2023, no. 5, pp. 60—69. [In Russ]. DOI: 10.21440/0536-10282023-5-60-69.

20. Gendler S. G., Kopachev V. F., Kovshov S. V. Monitoring of compressed air losses in branched air flow networks of mining enterprises. Journal of Mining Institute. 2022, vol. 253, pp. 3—11. [In Russ]. DOI: 10.31897/PMI.2022.8.

21. Zalazinskij A. G. Monitoring the technical condition of mine main lift installations. Minerals and Mining Engineering. 2022, no. 1, pp. 84—91. [In Russ]. DOI: 10.21440/0536-1028-2022-1-84-91.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.