Study of influence of the deep pit construction on soil mass in flat and spatial formulation

The paper presents the study of the impact of deep pit of different geometries on the stress-strain state of the enclosing soil body. This topic is relevant in the construction of deep pits in soft soils in restrained urban conditions. Even under the protection of a slurry wall and strutting, that is a rigid structure, ultimate deformations of soil body can occur, which can lead to damage of the surrounding buildings, often of historical importance. Numerical modeling performed by finite element method in Plaxis software package revealed that in most cases the prediction of the stress-strain state of the soil body in the vicinity of such structures in 2D or plane setting does not give a reliable result. It is necessary to perform spatial numerical modeling. For practical purposes and preliminary calculations, authors proposed dependencies that determine the values of conversion factors from 2D to 3D setting of the problem for any spatial location of the adjacent building on the basis of a multivariate study. Numerical calculations give satisfactory convergence with in-situ data and can be used to predict the stress-strain state of the soil body in the vicinity of deep pit.

Keywords: geomechanical forecast, construction in dense urban development, soft soil, deep pit, slurry wall, hardening soil model, numerical modeling, underground construction, finite element method.
For citation:

Demenkov P. A., Komolov V. V. Study of influence of the deep pit construction on soil mass in flat and spatial formulation. MIAB. Mining Inf. Anal. Bull. 2023;(6):97-110. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_97.

Acknowledgements:
Issue number: 6
Year: 2023
Page number: 97-110
ISBN: 0236-1493
UDK: 624.134.4
DOI: 10.25018/0236_1493_2023_6_0_97
Article receipt date: 30.12.2022
Date of review receipt: 24.04.2023
Date of the editorial board′s decision on the article′s publishing: 10.05.2023
About authors:

P.A. Demenkov1, Dr. Sci. (Eng.), Assistant Professor, Dean of Construction Faculty, e-mail: demenkov_pa@pers.spmi.ru, ORCID ID: 0000-0003-1599-8080,
V.V. Komolov1, Assistant of Chair, e-mail: Komolov_VV@pers.spmi.ru, ORCID ID: 0000-0002-5468-6760,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

V.V. Komolov, e-mail: Komolov_VV@pers.spmi.ru.

Bibliography:

1. Trushko V. L., Protosenya A. G. Prospects of geomechanics development in the context of new technological paradigm. Journal of Mining Institute. 2019, vol. 236, pp. 162—166. [In Russ]. DOI: 10.31897/PMI.2019.2.162.

2. Protosenya A. G., Lebedev M. O., Karasev M. A., Belyakov N. A. Geomechanics of low-subsidence construction during the development of underground space in large cities and megalopolises. International Journal of Mechanical and Production Engineering Research and Development. 2019, vol. 9, no. 5, pp. 1005—1014.

3. Lebedev M. O. Geotechnical approaches to safe development of the underground space in St. Petersburg. International Journal of Recent Technology and Engineering. 2019, vol. 8, no. 1, pp. 139—145.

4. Stahlhut O., Borchert Kurt.-M., Voigt R. E. Planung und Realisierung einer innerstädtischen tiefen Trogbaugrube bei komplexen Randbedingungen. Bautechnik. 2018, vol. 95, no. 1, pp. 62—71.

5. Zhu C., Yan Z., Lin Y., Xiong F., Tao Z. Design and application of a monitoring system for a deep railway foundation pit project. IEEE Access. 2019, vol. 7, pp. 107591—107601.

6. Tien N. T., Karasev M. A., Vilner M. A. Study of the stress-strain state in the sub-rectangular tunnel. Geotechnics for Sustainable Infrastructure Development. 2020, vol. 62, pp. 383—388.

7. Mangushev R. A., Osokin A. I., Usmanov R. A. Ustroystvo i rekonstruktsiya osnovaniy i fundamentov na slabykh i strukturno-neustoychivykh gruntakh [Device and reconstruction of bases and foundations on weak and structurally unstable soils], Saint-Petersburg, Lan', 2018, 460 p.

8. Wei D., Xu D., Zhang Y. A fuzzy evidential reasoning-based approach for risk assessment of deep foundation pit. Tunnelling and Underground Space Technology. 2020, vol. 97, article 103232.

9. Zhou Ying, Li Sh., Zhou Ch., Luo H. Intelligent approach based on random forest for safety risk prediction of deep foundation pit in subway stations. Journal of Computing in Civil Engineering. 2019, vol. 33, no. 1, article 05018004. DOI: 10.1061/(ASCE)CP.1943-5487.0000796.

10. Song D., Chen Z., Dong L. Monitoring analysis of influence of extra-large complex deep foundation pit on adjacent environment: a case study of Zhengzhou City, China. Geomatics, Natural Hazards and Risk. 2020, vol. 11, no. 1, pp. 2036—2057.

11. Ulitsky V. M., Shashkin A. G., Shashkin K. G., Vasenin V. A., Lisyuk M. B. Dashko R. E. Interaction between structures and compressible subsoils considered in light of soil mechanics and structural mechanics. 18th International Conference on Soil Mechanics and Geotechnical Engineering: Challenges and Innovations in Geotechnics, ICSMGE 2013. 2013, pp. 825.

12. Tan Y., Wang D. Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. II: Top-down construction of the peripheral rectangular pit. Journal of Geotechnical and Geoenvironmental Engineering. 2013, vol. 139, no. 11, pp. 1894—1910.

13. Wang Z. Numerical analysis of deformation control of deep foundation pit in ulanqab city. Geotechnical and Geological Engineering. 2021, vol. 39, no. 4, pp. 5325—5337. DOI: 10.1007/s10706-021-01836-6.

14. Ding Z., Jin J., Han T.-C. Analysis of the zoning excavation monitoring data of a narrow and deep foundation pit in a soft soil area. Journal of Geophysics and Engineering. 2018, vol. 15, no. 4, pp. 1231—1241.

15. Dashko R. E., Lokhmatikov G. A. The Upper Kotlin clays of the Saint Petersburg region as a foundation and medium for unique facilities: an engineering-geological and geotechnical analysis. Journal of Mining Institute. 2022, vol. 254, pp. 180—190. [In Russ]. DOI: 10.31897/ PMI.2022.13.

16. Dashko R. E., Shidlovskaya A. V. Physical and chemical genesis of swell and osmotic shrinkage of clay soils in construction’s base by results of experimental researches. Journal of Mining Institute. 2011, vol. 190, pp. 65—70. [In Russ].

17. Nianqing Zhou, Vermeer P. A., Rongxiang Lou, Yiqun Tang, Simin Jiang Numerical simulation of deep foundation pit dewatering and optimization of controlling land subsidence. Engineering Geology. 2010, vol. 114, no. 3-4, pp. 251—260. DOI: 10.1016/j.enggeo.2010.05.002.

18. Chaofeng Zeng, Xiu-Li Xue, Miao-Kun Li Use of cross wall to restrict enclosure movement during dewatering inside a metro pit before soil excavation. Tunnelling and Underground Space Technology. 2021, vol. 112, pp. 814. DOI: 10.3390/w15040814.

19. Dashko R. E., Shidlovskaya A. V., Aleksandrova O. Yu. Alekseev I. V. Engiineering-geological and hydrogeological problems of St. Isaak cathedral’s long-term stability substantiation (Saint-Petersburg). Journal of Mining Institute. 2012, vol. 195, pp. 28—32. [In Russ].

20. Dashko R. E., Lebedeva Ya. A. Improving approaches to estimating hydrogeological investigations as a part of engineering survey in megacities: Case study of St. Petersburg. Water Resources. 2017, vol. 44, no. 7, pp. 875—885. DOI: 10.1134/S009780781707003X.

21. Ulitsky V. Bogov S. Restoration engineering of historic structures: Case study of building 12 on new Holland Island in Saint-Petersburg. Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations. Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, GFAC 2019, 2019, pp. 390.

22. Haoyu Han, Hongyuan Liu, Andrew Hin Cheong Chan, Mcmanus T. Three-dimensional finite element modelling of excavation-induced tunnel wall movement and damage: A case study. Sadhana. 2019, vol. 44, no. 8. DOI: 10.1007/s12046-019-1167-0.

23. Mirsayapov I., Khasanov R., Safin D. Ensuring the stability of the deep pit enclosure and foundation bases in the conditions of reconstruction of the architectural monument in the city of Kazan. E3S Web of Conferences. 2021, vol. 274, no. 5, article 03022. DOI: 10.1051/ e3sconf/202127403022.

24. Hatoum H. M., Choker H. M., Mustafin M. G. Geodesic methods for modeling and protection of megalopolis objects. IOP Conference Series: Materials Science and Engineering. 2019, vol. 698, no. 4, pp. 044009. DOI: 10.1088/1757-899X/698/4/044009.

25. Shashkin A. G., Shashkin K. G., Dashko R. E. Analysis of causes of deformations in historic buildings on weak clay soils. Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations. Proceedings of the International Conference on Geotechnics Fundamentals and Applications in Construction: New Materials, Structures, Technologies and Calculations, GFAC 2019. 2019, pp. 329—334. DOI: 10.1201/ 9780429058882-64.

26. Ulitsky V., Shashkin A., Shashkin K., Lisyuk M., Awwad T. Numerical simulation of new construction projects and existing buildings and structures taking into account their deformation scheme. 19th International Conference on Soil Mechanics and Geotechnical Engineering. ICSMGE 2017. 2017, pp. 2061.

27. Ulitsky V. M., Shashkin A. G., Shashkin K. G. Lisyuk M. B. Preservation and reconstruction of historic monuments in Saint Petersburg with provisions for soil-structure interaction. 2nd International Symposium on Geotechnical Engineering for the Preservation of Monuments and Historic Sites. Collection of Articles, 2013, pp. 735—742.

28. Ulitsky V., Shashkin A., Shashkin C., Lisyuk M. The tower of the Admiralty in Saint Petersburg. Geotechnics and Heritage: Historic Towers, 2017, pp. 171—190.

29. Lei M., Liu L., Lin Y., Shi Ch. Research progress on stability of slurry wall trench of underground diaphragm wall and design method of slurry unit weight. Advances in Civil Engineering. 2019, vol. 2019, pp. 1—19. DOI: 10.1155/2019/3965374.

30. Guo P., Gong X., Wang Y. Displacement and force analyses of braced structure of deep excavation considering unsymmetrical surcharge effect. Computers and Geotechnics. 2019, vol. 113, article 103102. DOI: 10.1016/j.compgeo.2019.103102.

31. Houhou M. N., Emeriault F., Belounar A. Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls. Tunnelling and Underground Space Technology. 2019, vol. 83, pp. 153—164. DOI: 10.1016/j.tust.2018.09.013.

32. Carswell W., Siebert D. R. Design and performance of a temporary concrete diaphragm wall excavation support system in South Boston, Massachusetts. Geo-Congress 2019. Philadelphia, Pennsylvania: American Society of Civil Engineers. 2019, pp. 44—57. DOI: 10.1061/ 9780784482087.005.

33. Dashko R. E., Pankratova K. V., Korobko A. A. Study of engineering-geological and microbiological factors for assessing the dynamics of fracture in tunnel highway Saint Petersburg– Kiev. Journal of Mining Institute. 2012, vol. 195, pp. 24—27. [In Russ].

34. Sokolov N. S. Mistakes in the construction of objects in constrained conditions. Lecture Notes in Civil Engineering. 2020, vol. 173, pp. 157—165. DOI: 10.1007/978-3-030-812898_21.

35. Nisha J. J., Madhavan M., Mani V., Prasad C. R. E. Design, construction and uncertainties of a deep excavation adjacent to the high-rise building. Indian Geotechnical Journal. 2019, vol. 49, no. 5, pp. 580—594. DOI: 10.1007/s40098-019-00368-4.

36. Ofrikhter I. V., Ponomaryov A. P., Zakharov A. V., Shenkman R. I. Estimation of soil properties by an artificial neural network. Magazine of Civil Engineering. 2022, vol. 110, no. 2, article 11011. DOI: 10.34910/MCE.110.11.

37. Gospodarikov A. P., Zatsepin M. A. Mathematical modeling of boundary problems in geomechanics. Gornyi Zhurnal. 2019, no. 12, pp. 16—20. [In Russ]. DOI: 10.17580/gzh.2019. 12.03.

38. Protosenya A. G., Iovlev G. А. Prediction of spatial stress–strain behavior of physically nonlinear soil mass in tunnel face area. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 128—139. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0-128-139.

39. Alekseev A. V., Iovlev G. А. Adjustment of hardening soil model to engineering geological conditions of Saint-Petersburg. MIAB. Mining Inf. Anal. Bull. 2019, no. 4, pp. 75—87. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-75-87.

40. Zhou Y., Li Ch., Ding L., Sekula P., Love P. E. D., Zhou Ch. Combining association rules mining with complex networks to monitor coupled risks. Reliability Engineering & System Safety. 2019, vol. 186, pp. 194—208. DOI: 10.1016/j.ress.2019.02.013.

41. Kostenko B. V. Field data analysis in construction of escalator tunnel at Spasskaya Station of the Saint-Petersburg Metro using tunnel boring machine. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 100—115. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_100.

42. Hatoum H. M., Mustafin M. G. Optimization of locating robotic total stations for determining the deformations of buildings and structures. Geodezia i Kartografia. 2020, vol. 963, no. 9, pp. 2—13. DOI: 10.22389/0016-7126-2020-963-9-2-13.

43. Novozhenin S. U., Vystrchil M. G., Bogdanova K. A. Analysis of the mathematical modelling results of displacements and deformations induced by the construction of the escalator tunnel of «Mining Institute» station in Saint Petersburg. Journal of Physics: Conference Series. 2020, vol. 166, no. 1, pp. 012105—012112. DOI: 10.1088/1742-6596/1661/1/012105.

44. Carswell W., Siebert D. R. Design and performance of a temporary concrete diaphragm wall excavation support system in South Boston, Massachusetts. Geo-Congress 2019. Philadelphia, Pennsylvania: American Society of Civil Engineers, 2019, pp. 44—57.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.