Effect of structural disturbance on stability of pillars in geological conditions of apatite–nepheline deposits

The apatite-nepheline deposits of the Khibiny massif are the main base for the extraction of apatite-nepheline ores in the Russian Federation and are characterized by high intensity of work, increasing depth of development and more complex mining and geological conditions. The rock mass at the field is strong, fragile and structurally damaged, which predetermines various forms of loss of stability of the structural elements of the development, in particular pillars. At the same time, in regulatory documents when assessing the stability of mine workings, the parameters of structural damage that have a direct impact on the mechanical behavior of the rock mass are taken into account indirectly, i.e. indirect method. The article studies the influence of the structural discontinuities of the massif on the stress state of the pillars using the methods of numerical modeling and physical modeling on equivalent materials. The results obtained demonstrate the significant influence of the block structure of the massif on the results of forecast its stress-strain state in comparison with models of the behavior of the massif that implements the principles of continuum mechanics. In which the presence of structural damage and their quantitative characteristics are taken into account by an indirect method, i.e. through an artificial reduction in the deformation properties of the massif, based on the results of geotechnical mapping and determination of the Bieniawski RMR rating. The mechanism of loss of stability of the block array differs due to the presence of weakening planes. Qualitative convergence of the results of numerical and physical modeling is achieved. The quantitative discrepancy between the results between the two modeling methods does not exceed 25 percent. Research shows the need to take into account structural discontinuities explicitly and develop additions to the methodology for assessing the stability of pillars located in structurally damaged block massif.

Keywords: apatite-nepheline deposits, sub-storey system, pillar, numerical modeling, structural disturbance, blocky rock mass, weakening surface, physical modeling.
For citation:

Bagautdinov I. I., Streshnev D. A. Effect of structural disturbance on stability of pillars in geological conditions of apatite–nepheline deposits. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):129-144. [In Russ]. DOI: 10.25018/0236_1493_2024_121_0_129.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 129-144
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2024_121_0_129
Article receipt date: 17.06.2024
Date of review receipt: 17.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

I.I. Bagautdinov, Cand. Sci. (Eng.), Leading Researcher, Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia, e-mail: bagautdinov_ii@pers.spmi.ru, Scopus Author ID: 57204217965,
D.A. Streshnev, Head of Department of Forecast and Warning of Rockburst, Kirovsk branch of JSC Apatit, PJSC PhosAgro, 184250, Kirovsk, Russia, e-mail: info@apatit.com.

 

For contacts:

I.I. Bagautdinov, e-mail: bagautdinov_ii@pers.spmi.ru.

Bibliography:

1. Protosenya A. G., Vilner M. Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach. Rudarsko-geološko-naftni zbornik. 2022, vol. 38, pp. 137—147. DOI: 10.17794/rgn.2022.2.12.

2. Krauland N., Soder P. E. Determining pillar strength from pillar failure observations. Engineering and Mining Journal. 1987, vol. 8, pp. 34—40.

3. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023, vol. 262, pp. 619—627. [In Russ].

4. Potvin Y., Hudyma M. R., Miller H. D. S. Design guidelines for open stope support. CIM Bulletin. 1989, vol. 82, no. 926, pp. 53—62.

5. Lunder P. J., Pakalnis R. C. Determination of the strength of hard-rock mine pillars. CIM Bulletin. 1997, vol. 90, pp. 51—55.

6. Marysyuk V. P., Shilenko S. Yu., Andreev A. A., Shabarov A. N. Interwell area design procedure to generate safe zones in rockburst-hazardous conditions of Talnakh deposits. Gornyi Zhurnal. 2023, no. 1, pp. 106—112. [In Russ]. DOI: 10.17580/gzh.2023.01.18.

7. Gao F., Kang H., Lou J., Li J., Wang X. Evolution of local mine stiffness with mining process: Insight from physical and numerical modeling. Rock Mechanics and Rock Engineering. 2019, vol. 52, pp. 3947—3958.

8. Cai M., Kaiser P. K. Rockburst support: Reference book. Sudbury: Laurentian University, 2018. Vol. 1. Rockburst Phenomenon and Support Characteristics. 284 p.

9. Hampel A., Arguello J. G., Gunther R. M., Lux K.-H., Pudewills A. Joint project III on the comparison of constitutive models for the thermomechanical behavior of rock salt I. Overview and results from model calculations of healing of rock salt. Proceedings Conference on Mechanical Behavior of Salt, Saltmech VIII, South Dakota School of Mines and Technology, USA. 2015.

10. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022, vol. 253, no. 1, pp. 41—48. DOI: 10.31897/PMI.2022.1.

11. Qiu Jiadong, Xibing Li, Diyuan Li, Yuzhe Zhao, Chuwei Hu, Lisha Liang Physical model test on the deformation behaviour of an under-ground tunnel under blasting disturbance. Rock Mechanics and Rock Engineering. 2021, vol. 54, pp. 91—108.

12. Korchak P. A., Karasev M. A. Geo-mechanical prediction of the brittle fracture zones in rocks in the vicinity of the excavation junction of LTD «Apatit» mines. Sustainable Development of Mountain Territories. 2023, vol. 15, no. 1, pp. 67—80. [In Russ]. DOI: 10.21177/1998-4502-2023-15-1-67-80.

13. Vasarhelyi Balazs, Kovács Dorottya Empirical methods of calculating the mechanical parameters of the rock mass. Periodica Polytechnica Civil Engineering. 2017, vol. 61, pp. 38—50. DOI: 10.3311/PPci.10095.

14. Zuev B. Y. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021, vol. 250, pp. 542—552. DOI: 10.31897/PMI.2021.4.7.

15. Semenova I. E., Avetisyan I. M. Geomechanical foundation for mining in rockburst-hazardous conditions: Concept development. Gornyi Zhurnal. 2022, no. 1, pp. 28—33. DOI: 10.17580/gzh.2022. 01.05.

16. Kang H., Lou J., Gao F., Yang J., Li J. A physical and numerical investigation of sudden massive roof collapse during longwall coal retreat mining. International Journal of Coal Geology. 2018, vol. 188, pp. 25—36.

17. Liu J., Feng X.-T., Ding X.-L., Zhang J., Yue D.-M. Stability assessment of the Three-Gorge dam foundation, China, using physical and numerical modeling. Part I: Physical model tests. International Journal of Rock Mechanics and Minings Sciences. 2003, vol. 40, no. 5, pp. 609—631.

18. Morozov K. V., Demekhin D. N., Kotlov S. N., Abashin V. I. In-situ permeability testing of deep-level potash salt rocks with a view to creating water retaining walls. Gornyi Zhurnal. 2023, no. 5, pp. 25—31. DOI: 10.17580/gzh.2023.05.04

19. Sidorenko A. A., Sidorenko S. A., Ivanov V. V. Numerical modelling of multiple-seam coal mining at the Taldinskaya-Zapadnaya-2 mine. ARPN Journal of Engineering and Applied Sciences. 2021, vol. 16, no. 5, pp. 568—574.

20. Phuc L. Q., Zubov V. P., Dac P. M. Improvement of the loading capacity of narrow coal pillars and control roadway deformation in the longwall mining system. A case study at khe cham coal mine (Vietnam). Inzynieria Mineralna. 2020, vol. 1, no. 1, pp. 115—122. DOI: 10.29227/IM-2020-02-15.

21. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2021, vol. 32. DOI: 10.1016/j.ijmst.2021.09.010.

22. Antunes do Carmo J. Physical modelling vs. numerical modelling: Complementarity and Learning. 2020. DOI: 10.20944/preprints202007.0753.v1.

23. Al-Janabi Ahmed, Ghazali Abdul, Ghazaw Yousry, Afan Haitham, Al-Ansari Nadhir, Yaseen Zaher. Experimental and numerical analysis for earth-fill dam seepage. Sustainability. 2020, vol. 12, no. 6, article 2490. DOI: 10.3390/su12062490.

24. Islam Md Mojahidul Applications of rock mechanics in mining engineering: Case studies and challenges in Bangladesh. 2024.

25. Zeitinova Sh., Askar Imashev, Bakhtybayev N., Matayev A., Mussin A., Yeskenova Gulnura Numerical modeling the rock mass stress-strain state near vertical excavations in combined mining. Civil Engineering Journal. 2024, vol. 10, pp. 2919—2934. DOI: 10.28991/CEJ-2024-010-09-010.

26. Salkynov Arnat, Rymkulova Arailym, Suimbayeva Aigerim, Zeitinova Sholpan Research into deformation processes in the rock mass surrounding the stoping face when mining sloping ore deposits. Mining of Mineral Deposits. 2023, vol. 17, pp. 82—90. DOI: 10.33271/mining17.02.082.

27. Zhang Cun, Zhao Yixin, Han Penghua, Bai Qingsheng Coal pillar failure analysis and instability evaluation methods: A short review and prospect. Engineering Failure Analysis. 2022, vol. 138, article 106344. DOI: 10.1016/j.engfailanal.2022.106344.

28. Xia Ze, Yao Qiangling, Xu Qiang, Ma Junqiang, Liu Zichang Numerical-modeling-based assessment of the impact of two-end-type cable support on failure characteristics of yield pillars. Engineering Failure Analysis. 2021, vol. 128, article 105619. DOI: 10.1016/j.engfailanal.2021.105619.

29. Zhang Qiang, Wang Jiaqi, Guo Yuming, Chen Yang, Sun Qiang Study on deformation and stress evolution law of surrounding rock under repeated mining in close coal seam. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2020. DOI: 10.1080/15567036.2020.1831654.

30. Hawkes I., Fellers G. E. Theory of the determination of the greatest principal stress in a biaxial stress field using photoelastic hollow cylinder inclusions. International Journal of Rock Mechanics and Mining Sciences, Geomechanics Abstracts. 1969, vol. 6, pp. 143—158. DOI: 10.1016/01489062(69)90032-1.

31. Das Arka, Mandal Prabhat, Paul Partha, Sinha Rabindra, Tewari Subhashish Assessment of the strength of inclined coal pillars through numerical modelling based on the ubiquitous joint model. Rock Mechanics and Rock Engineering. 2019, vol. 52, pp. 3691—3717. DOI: 10.1007/s00603-01901826-4.

32. Chen Jianhang, Saydam Serkan, Hagan Paul Numerical simulation of the pull-out behaviour of fully grouted cable bolts. Construction and Building Materials. 2018, vol. 191, pp. 1148—1158. DOI: 10.1016/j.conbuildmat.2018.10.083.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.