Bibliography: 1. Perepelitsyn V. A., Egovtsev A. V., Merzlyakov V. N., Kochetkov V. V., Ponomarenko A. A., Ponomarenko Z. G., Kolobov A. Yu. Promising technogenic mineral resources for the production of refractories. New Refractories. 2019, no. 6, pp. 12—16. [In Russ]. DOI: 10.17073/1683-4518-2019-6-12-16.
2. Klyuev S., Sevostyanov V., Sevostyanov M., Fediuk R., Sabitov L., Ageeva M., Fomina E., Klyuev A., Protsenko A., Goryagin P., Babukov V., Shamgulov R. Improvement of technical means for recycling of technogenic waste to construction fiber. Case Studies in Construction Materials. 2022, vol. 16, article 01071. DOI: 10.1016/j.cscm.2022.e01071.
3. Okereafor U., Makhatha M., Mekuto L., Mavumengwana V. Gold mine tailings: a potential source of silica sand for glass making. Minerals. 2020, vol. 10, no. 5, article 448. DOI: 10.3390/min10050448.
4. Yarusova S. B., Skovpen A. V., Ivanenko N. V., Dostovalov D. V., Malyshev I. V., Gordienko P. S., Kozin A. V., Buravlev I. Yu., Shlyk D. H. The use of waste from drilling oil and gas wells in fine-grained concrete. Ekologicheskaya khimiya. 2023, vol. 32, no. 4, pp. 211—217. [In Russ].
5. Kramar L. Ya., Chernykh T. N., Orlov A. A., Prokofiev V. V. The use of serpentine waste from the extraction of chrysotile asbestos in the production of building materials. Sukhie stroitel'nye smesi. 2011, no. 2, pp. 14—16. [In Russ].
6. Ashimov U. B., Bolotov Y. A., Arykbaev R. K., Shipkov N. V. Thermal analysis of serpentinites. Refractories. 1989, vol. 30, no. 7-8, pp. 491—494.
7. Popov Yu. V., Zhabin A. V., Pustovit O. E. Mineral composition of serpentinites of tectonic melange of the Dakhovsky crystalline ledge (Greater Caucasus). Geology and Geophysics of Russian South. 2019, vol. 9, no. 4, pp. 38—48. [In Russ]. DOI: 10.23671/VNC.2019.4.44487.
8. Okamoto A., Tanaka S., Uno M., Dandar O., Yoshida K. Characterization of serpentinization in olivine–orthopyroxene–H2O system revealed by thermogravimetric and multivariate statistical analyses. Island Arc. 2024, vol. 33, no. 1, article 12519. DOI: 10.1111/iar.12519.
9. Nauchno-tekhnicheskiy progress v asbestovoy promyshlennosti SSSR. Pod red. B.A. Sonina [Scientific and technical progress in the asbestos industry of the USSR. Sonin B. A. (Ed.)], Moscow, Nedra, 1988, pp. 10—13.
10. Artemov V. R., Kuznetsova V. N. Kiembaevskoe mestorozhdenie khrizotil-asbesta [Kiembaevskoye deposit of chrysotile asbestos], Nedra, 1979, 239 p.
11. Kashansky S. V., Domnin S. T., Shcherbakov S. V., Plotko E. G., Kogan F. M., Vanchugova N. N., Sustavov S. G. Assessment of the toxicity of waste generated during the development of the Kiembaevsky chrysotile-asbestos deposit. Monitoring okruzhayushchey sredy i zdorov'ya naseleniya v zonakh tekhnogennogo zagryazneniya: Sbornik nauchnykh trudov [Monitoring of the environment and public health in areas of technogenic pollution: Collection of scientific papers], Ekaterinburg, 1997.
12. Fedorov S. A., Davydov S. Ya., Makarov V. N., Popov M. P., Utkina G. M. Мaterial composition and thermal properties of chrysotile asbestos enrichment tailings of the Kiembaevsky deposit. New Refractories. 2024, no. 3, pp. 8—13. [In Russ].
13. Masoud M. A., El-Khayatt A. M., Shahien M. G., Bakhit B. R., Suliman I. I., Zayed A. M. Radiation attenuation assessment of serpentinite rocks from a geological perspective. Toxics. 2022, vol. 10, no. 11, article 697. DOI: 10.3390/toxics10110697.
14. Kremenetskaya I. P., Ivashevskaya S. N., Ivanova T. K., Semenov V. G., Ilyina V. P. Structural and phase transformations in the course of antigorite thermolysis. Russian Journal of Applied Chemistry. 2023, vol. 96, no. 9, pp. 827—837. DOI: 10.1134/S107042722309001X.
15. Bai Z., Li G., Zhao F., Yu H. Tribological performance and application of antigorite as lubrication materials. Lubricants. 2020, vol. 8, no. 10, article 93. DOI: 10.3390/lubricants8100093.
16. Carmignano O. R. D., Vieira S. S., Brandão P. R. G., Bertoli A. C., Lago R. M. Serpentinites: Mineral structure, properties and technological applications. Journal of the Brazilian Chemical Society. 2020, vol. 31, pp. 2—14. DOI: 10.21577/0103-5053.20190215.
17. Liu T., Wang D., Shen K., Liu C., Yi L. Kinetics of antigorite dehydration: Rapid dehydration as a trigger for lower-plane seismicity in subduction zones. American Mineralogist. 2019, vol. 104, no. 2, pp. 282—290. DOI: 10.2138/am-2019-6805.
18. Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Geological Institute of Hungary. 2011, 180 p.
19. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD. Journal of Applied Crystallography. 2015, vol. 48, pp. 598—603.
20. Ivanova T. K., Kremenetskaya I. P. Influence of the granulation regime on the physical properties of granules from thermally activated serpentine. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2022, no. 19, pp. 127—132. [In Russ]. DOI: 10.31241/FNS.2022.19.024.
21. Pashkeev A. I., Pashkeev Yu. I., Mikhailov G. G. On the issue of complex processing of chromium ores of the Rai-Iz massif. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. 2010, no. 13, pp. 24—31. [In Russ].
22. Du Breuil C., Pasquier L. C., Dipple G., Blais J. F., Iliuta M. C., Mercier G. Impact of particle size in serpentine thermal treatment: Implications for serpentine dissolution in aqueous-phase using CO2 in flue gas conditions. Applied Clay Science. 2019, vol. 182, article 105286. DOI: 10.1016/j.clay.2019.105286.
23. Selivanov E. N., Belousov M. V., Gulyaeva R. I. Kinetics of thermal decomposition of natural brucite. Journal of chemical technology. 2020, vol. 21, no. 2, pp. 64—70. [In Russ]. DOI: 10.31044/16845811-2020-21-2-64-70.
24. Turvey C. C., Wynands E. R., Dipple G. M. A new method for rapid brucite quantification using thermogravimetric analysis. Thermochimica Acta. 2022, vol. 718, article 179366. DOI: 10.1016/j. tca.2022.179366.