The influence of roasting temperature on mineral composition of chrysotile asbestos processing tailings

Serpentinite rocks serve as promising raw materials to produce propants, as well as refractory building materials. Of interest are the tailings of enrichment during the extraction of chrysotile asbestos, since they have already passed the energy-consuming stages of crushing and grinding. The paper describes a study of the change in the material composition of the tailings of enrichment during the extraction of chrysotile asbestos from the Kiembaevsky deposit. It was found that all the studied material (the grain size of which does not exceed 2–3 mm) passes into forsterite, clinoenstatite, periclase, hematite and quartz at a heating temperature of 820 °C and above. The main share in the burnt material is always occupied by forsterite – 73.5–84.4 wt.%, in a smaller amount is clinoenstatite (9.7–19.6 wt.%). The content of minerals remaining in the samples does not exceed 10 wt.%. The change in mineral contents in the burnt enrichment tails varies between 9–10 wt.% depending on the grain size. Such values are associated with the heterogeneous composition of the studied enrichment tails. For a sample fraction of 0.1–0.25 mm, during firing from 820 to 1000 °C, there is a tendency for an increase in the forsterite content and a decrease in the clinoenstatite content. The content of periclase, hematite and quartz in the samples gradually rises to 850–900 °C at first, then gradually begins to fall. Thus, practically ready-made refractory raw materials can be obtained at firing temperatures of 820–850 °C. To improve the quality of these raw materials, it is recommended to increase the firing temperature of the enrichment tailings to 1000 °C.

Keywords: chrysotile, lizardite, antigorite, brucite, roasting, dehydration, forsterite, clinoenstatite, diffractogram.
For citation:

Fedorov S. A., Davydov S. Ya., Popov M. P., Makarov V. N., Utkina G. M. The influence of roasting temperature on mineral composition of chrysotile asbestos processing tailings. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):270-285. [In Russ]. DOI: 10.25018/ 0236_1493_2024_121_0_270.

Acknowledgements:

The research was funded in accordance with the state assignment on science for Ural State Mining University No 075-03-2024-132 dated 17.01.2024 and as part of the implementation of the federal program for strategic academic leadership «Priority 2030» (Ural State Mining University).

Issue number: 12
Year: 2024
Page number: 270-285
ISBN: 0236-1493
UDK: 669.046.416+691.276+54.03
DOI: 10.25018/0236_1493_2024_121_0_270
Article receipt date: 16.07.2024
Date of review receipt: 05.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

S.A. Fedorov1, Cand. Sci. (Eng.), Leading Researcher; Senior Researcher, Institute of Metallurgy of Ural Branch of the Russian Academy of Sciences, 620016, Ekaterinburg, Russia, e-mail: saf13d@mail.ru, ORCID ID: 0000-0002-4201-5177,
S.Ya. Davydov1, Dr. Sci. (Eng.), Chief Researcher, e-mail: davidovtrans@mail.ru,
M.P. Popov1, Cand. Sci. (Geol. Mineral.), Assistant Professor, Senior Researcher, e-mail: popovm1@yandex.ru, ORCID ID: 0000-0002-0527-8234,
V.N. Makarov1, Dr. Sci. (Eng.), Assistant Professor, Professor, e-mail: uk.intelnedra@gmail.com, ORCID ID: 0000-0002-3785-5569,
G.M. Utkina1, Laboratory Assistant Researcher, e-mail: gal.utk.2013@mail.ru, ORCID ID: 0009-0005-4773-2318,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

S.A. Fedorova, e-mail: saf13d@mail.ru.

Bibliography:

1. Perepelitsyn V. A., Egovtsev A. V., Merzlyakov V. N., Kochetkov V. V., Ponomarenko A. A., Ponomarenko Z. G., Kolobov A. Yu. Promising technogenic mineral resources for the production of refractories. New Refractories. 2019, no. 6, pp. 12—16. [In Russ]. DOI: 10.17073/1683-4518-2019-6-12-16.

2. Klyuev S., Sevostyanov V., Sevostyanov M., Fediuk R., Sabitov L., Ageeva M., Fomina E., Klyuev A., Protsenko A., Goryagin P., Babukov V., Shamgulov R. Improvement of technical means for recycling of technogenic waste to construction fiber. Case Studies in Construction Materials. 2022, vol. 16, article 01071. DOI: 10.1016/j.cscm.2022.e01071.

3. Okereafor U., Makhatha M., Mekuto L., Mavumengwana V. Gold mine tailings: a potential source of silica sand for glass making. Minerals. 2020, vol. 10, no. 5, article 448. DOI: 10.3390/min10050448.

4. Yarusova S. B., Skovpen A. V., Ivanenko N. V., Dostovalov D. V., Malyshev I. V., Gordienko P. S., Kozin A. V., Buravlev I. Yu., Shlyk D. H. The use of waste from drilling oil and gas wells in fine-grained concrete. Ekologicheskaya khimiya. 2023, vol. 32, no. 4, pp. 211—217. [In Russ].

5. Kramar L. Ya., Chernykh T. N., Orlov A. A., Prokofiev V. V. The use of serpentine waste from the extraction of chrysotile asbestos in the production of building materials. Sukhie stroitel'nye smesi. 2011, no. 2, pp. 14—16. [In Russ].

6. Ashimov U. B., Bolotov Y. A., Arykbaev R. K., Shipkov N. V. Thermal analysis of serpentinites. Refractories. 1989, vol. 30, no. 7-8, pp. 491—494.

7. Popov Yu. V., Zhabin A. V., Pustovit O. E. Mineral composition of serpentinites of tectonic melange of the Dakhovsky crystalline ledge (Greater Caucasus). Geology and Geophysics of Russian South. 2019, vol. 9, no. 4, pp. 38—48. [In Russ]. DOI: 10.23671/VNC.2019.4.44487.

8. Okamoto A., Tanaka S., Uno M., Dandar O., Yoshida K. Characterization of serpentinization in olivine–orthopyroxene–H2O system revealed by thermogravimetric and multivariate statistical analyses. Island Arc. 2024, vol. 33, no. 1, article 12519. DOI: 10.1111/iar.12519.

9. Nauchno-tekhnicheskiy progress v asbestovoy promyshlennosti SSSR. Pod red. B.A. Sonina [Scientific and technical progress in the asbestos industry of the USSR. Sonin B. A. (Ed.)], Moscow, Nedra, 1988, pp. 10—13.

10. Artemov V. R., Kuznetsova V. N. Kiembaevskoe mestorozhdenie khrizotil-asbesta [Kiembaevskoye deposit of chrysotile asbestos], Nedra, 1979, 239 p.

11. Kashansky S. V., Domnin S. T., Shcherbakov S. V., Plotko E. G., Kogan F. M., Vanchugova N. N., Sustavov S. G. Assessment of the toxicity of waste generated during the development of the Kiembaevsky chrysotile-asbestos deposit. Monitoring okruzhayushchey sredy i zdorov'ya naseleniya v zonakh tekhnogennogo zagryazneniya: Sbornik nauchnykh trudov [Monitoring of the environment and public health in areas of technogenic pollution: Collection of scientific papers], Ekaterinburg, 1997.

12. Fedorov S. A., Davydov S. Ya., Makarov V. N., Popov M. P., Utkina G. M. Мaterial composition and thermal properties of chrysotile asbestos enrichment tailings of the Kiembaevsky deposit. New Refractories. 2024, no. 3, pp. 8—13. [In Russ].

13. Masoud M. A., El-Khayatt A. M., Shahien M. G., Bakhit B. R., Suliman I. I., Zayed A. M. Radiation attenuation assessment of serpentinite rocks from a geological perspective. Toxics. 2022, vol. 10, no. 11, article 697. DOI: 10.3390/toxics10110697.

14. Kremenetskaya I. P., Ivashevskaya S. N., Ivanova T. K., Semenov V. G., Ilyina V. P. Structural and phase transformations in the course of antigorite thermolysis. Russian Journal of Applied Chemistry. 2023, vol. 96, no. 9, pp. 827—837. DOI: 10.1134/S107042722309001X.

15. Bai Z., Li G., Zhao F., Yu H. Tribological performance and application of antigorite as lubrication materials. Lubricants. 2020, vol. 8, no. 10, article 93. DOI: 10.3390/lubricants8100093.

16. Carmignano O. R. D., Vieira S. S., Brandão P. R. G., Bertoli A. C., Lago R. M. Serpentinites: Mineral structure, properties and technological applications. Journal of the Brazilian Chemical Society. 2020, vol. 31, pp. 2—14. DOI: 10.21577/0103-5053.20190215.

17. Liu T., Wang D., Shen K., Liu C., Yi L. Kinetics of antigorite dehydration: Rapid dehydration as a trigger for lower-plane seismicity in subduction zones. American Mineralogist. 2019, vol. 104, no. 2, pp. 282—290. DOI: 10.2138/am-2019-6805.

18. Földvári M. Handbook of thermogravimetric system of minerals and its use in geological practice. Budapest: Geological Institute of Hungary. 2011, 180 p.

19. Altomare A., Corriero N., Cuocci C., Falcicchio A., Moliterni A., Rizzi R. QUALX2.0: a qualitative phase analysis software using the freely available database POW_COD. Journal of Applied Crystallography. 2015, vol. 48, pp. 598—603.

20. Ivanova T. K., Kremenetskaya I. P. Influence of the granulation regime on the physical properties of granules from thermally activated serpentine. Trudy Fersmanovskoy nauchnoy sessii GI KNTs RAN. 2022, no. 19, pp. 127—132. [In Russ]. DOI: 10.31241/FNS.2022.19.024.

21. Pashkeev A. I., Pashkeev Yu. I., Mikhailov G. G. On the issue of complex processing of chromium ores of the Rai-Iz massif. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. 2010, no. 13, pp. 24—31. [In Russ].

22. Du Breuil C., Pasquier L. C., Dipple G., Blais J. F., Iliuta M. C., Mercier G. Impact of particle size in serpentine thermal treatment: Implications for serpentine dissolution in aqueous-phase using CO2 in flue gas conditions. Applied Clay Science. 2019, vol. 182, article 105286. DOI: 10.1016/j.clay.2019.105286.

23. Selivanov E. N., Belousov M. V., Gulyaeva R. I. Kinetics of thermal decomposition of natural brucite. Journal of chemical technology. 2020, vol. 21, no. 2, pp. 64—70. [In Russ]. DOI: 10.31044/16845811-2020-21-2-64-70.

24. Turvey C. C., Wynands E. R., Dipple G. M. A new method for rapid brucite quantification using thermogravimetric analysis. Thermochimica Acta. 2022, vol. 718, article 179366. DOI: 10.1016/j. tca.2022.179366.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.