Effect of peat–diatomite ameliorant on grass cover persistency in disturbed land reclamation

The urgency of reclamation of land disturbed by extensive mineral mining is apparent as extensive mineral mining often causes local manmade accidents, including outflows of oil products both in storage and in fueling. The primary objective of the experimental research cycle is optimization of concentrations of peat–diatomite ameliorant (PDA) in reclamation of land disturbed by such accidents. This article describes the applied research results on the effect of PDA application on grass cover persistency. The element analysis of samples was performed using the methods of atomic absorption spectrometry and infrared spectrometry at the Mining Ecology Laboratory at the Institute of Mining UB RAS. The studies proved the favorable effect of PDA on the survival ability of smooth bromegrass which is a common plant for biological reclamation and, consequently, on the persistency of grass cover both at high and low degree of pollution. Combination of PDA with humin and bacterial products at this stage of the research showed no essential influence on reduction of phytotoxicity of soil and degradation of hydrocarbons, except for sample PDA+B50 which decreased concentration of hydrocarbons by 60%.

Keywords: reclamation, disturbed land, phytoremediation, phytotoxicity, degradation, ameliorant, peat, diatomite, potassium humate.
For citation:

Antoninova N. Yu., Usmanov A. I., Sobenin A. V., Gorbunov A. A. Effect of peat–diatomite ameliorant on grass cover persistency in disturbed land reclamation. MIAB. Mining Inf. Anal. Bull. 2022;(5):131-141. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_131.


The study was carried out under State Contract No. 075-00412-22 PR. Topic 2 (2022-2024): Development of GeoInformation Technologies for Mining Territory Safety Assessment and Adverse Process Progression Prediction in Subsoil Use (FUWE-2022-0002), Registration No. 1021062010532-7-1.5.1.

Issue number: 5
Year: 2022
Page number: 131-141
ISBN: 0236-1493
UDK: 581.522.5
DOI: 10.25018/0236_1493_2022_5_0_131
Article receipt date: 08.11.2021
Date of review receipt: 10.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

N.Yu. Antoninova1, Cand. Sci. (Eng.), Head of Laboratory, e-mail: natal78@list.ru, ORCID ID: 0000-0002-8503-639X,
A.I. Usmanov1, Junior Researcher, e-mail: albert3179@mail.ru, ORCID ID: 0000-0002-3650-0467, 
A.V. Sobenin1, Junior Researcher, e-mail: arsob@yandex.ru, ORCID ID: 0000-0001-5513-5680, 
A.A. Gorbunov1, Laboratory Assistant, e-mail: alex021297@mail.ru, ORCID ID: 0000-0002-9057-0896,
1 Institute of Mining, Ural Branch of Russian Academy of Sciences, 620075, Ekaterinburg, Russia.


For contacts:

A.I. Usmanov, e-mail: albert3179@mail.ru.


1. Vershinin A. A., Petrov A. M., Akaykin D. V., Ignatiev Yu. A. Assessment of biological activity of sod-podzolic soils of different granulometric composition in conditions of oil pollution. Eurasian Soil Science. 2014, no. 2, pp. 250–256. [In Russ]. DOI: 10.7868/S0032180X14020130.

2. Karimullin L. K., Petrov A. M., Vershinin A. A. Phytorecultivation and physiological activity of oil-contaminated sod-podzolic soil. Rossiyskiy zhurnal prikladnoy ekologii. 2016, no. 1, pp. 14—17. [In Russ].

3. Cruz J. M., Corroqué N. A., Montagnoli R. N. et al. Comparative study of phytotoxicity and genotoxicity of soil contaminated with biodiesel, diesel fuel and petroleum. Ecotoxicology. 2019, no. 28, рр. 449–456. DOI: 10.1007/s10646-019-02037-x.

4. Ignatiev Yu. A., Zainulgabidinov E. R., Petrov A. M. Changes in the hydrocarbon composition of oil-contaminated sod-podzolic soil under standardized incubation conditions. Bulletin of Kazan technological university. 2014., vol. 17, no. 15, pp. 256–260. [In Russ].

5. Zainulgabidinov E. R., Ignatiev Yu. A., Petrov A. M., Khabibullin R. E. The effect of incubation duration on the composition of normal hydrocarbons at different levels of initial oil content in the soil. Bulletin of the Technological University. 2016, vol. 19, no. 10, pp. 56–60. [In Russ].

6. Ustybayeva A. A., Petrov A. M., Zainulgabidinov E. R.,Ignatiev Yu. A., Kuznetsova T. V. Dynamics of growth of higher plants on recultivated oil-contaminated alluvial meadow soils of different granulometric composition. Rossiyskiy zhurnal prikladnoy ekologii. 2020, no. 1, pp. 60–65. [In Russ].

7. Jones R., Sun W., Tang C. S., Robert F. M. Phytoremediation of petroleum hydrocarbons in tropical coastal soils. II. Microbial response to plant roots and contaminant. Environmental Science and Pollution Research. 2004, vol. 11, pp. 340–346. DOI: 10.1007/BF02979649.

8. Antoninova N. Yu., Usmanov A. I., Sobenin A. V. Analysis of the process of phytoremediation of oil-contaminated soil using peat-diatomite meliorant. Problems of Subsoil Use. 2020, no. 4(27), pp. 110—118. [In Russ]. DOI: 10.25635/2313-1586.2020.04.110.

9. Antoninova N. Yu., Usmanov A. I., Shubina L. A., Sobenin A. V. Assessment of the possibility of using peat-diatomite meliorant in the development of measures for ecological rehabilitation of disturbed ecosystems. Sustainable Development of Mountain Territories. 2020, vol. 12, pp. 493–500. [In Russ]. DOI: 10.21177/1998-4502-2020-12-4-493-500.

10. Rakhmanova, G. F., Sharonova N. L., Degtyareva I. A. The effect of nanosorbent on the processes of bioremediation of oil-contaminated soil. Bulletin of the Technological University. 2016, vol. 19, no. 5, pp. 149–152. [In Russ].

11. Adetitun D., Akinmayowa V., Olubunmi A., Olayemi A. Biodegradation of jet fuel by three gram negative bacilli isolated from kerosene contaminated soil. Pollution. 2018, vol. 4, no. 2, pp. 291–303. DOI: 10.22059/POLL.2017.241366.319.

12. Huiling Liu, Xiao Tan, Jingheng Guo, Xiaohui Liang, Qilai Xie, Shuona Chen Bioremediation of oil-contaminated soil by combination of soil conditioner and microorganism. Journal of Soils and Sediments. 2020, vol. 20, no. 5, pp. 2121–2129. DOI: 10.1007/s11368-020-02591-6.

13. Omran S. E., Shorafa M., Zolfaghari A., Toolarood A. A. S. The effect of biochar on severity of soil water repellency of crude oil-contaminated soil. Environmental Science and Pollution Research. 2020, vol. 27, no. 4, pp. 6022–6032. DOI: 10.1007/s11356-019-07246-9.

14. Khoshgoftar A., Khodaparast M., Sedighi M. Effect of residues from a burnt oil refinery on the compaction parameters and strength of clayey sand. Bulletin of Engineering Geology and the Environment. 2021, vol. 80, pp. 6331–6341. DOI: 10.1007/s10064-021-02320-4.

15. Kirk J., Klironomos J., Lee H., Trevors J. T. The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environmental Pollution. 2005, vol. 133, no. 3, pp. 455–465. DOI: 10.1016/j.envpol.2004.06.002.

16. Usmanov A. I., Gorbunov A. V. Patent RU 2718815 S1, MPK B09S 1/08. 14.04.2020. [In Russ].

17. Gavrilin I. I., Shigapov A. M. Assessment of the influence of oil and petroleum products on the state of vegetation by indicators of phytotoxicity of soils. Systems. Methods. Technologies. 2015, no. 3(27), pp. 144–148. [In Russ].

18. Gorelova G. V., Katsko I. A. Teoriya veroyatnostey i matematicheskaya statistika v primerakh i zadachakh s primeneniem Exsel [Probability theory and mathematical statistics in examples and problems using Excel], Rostov-na-Donu, Feniks, 2006, 475 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.