Research of the internal structure of diabase samples by optical-acoustic and computer x-ray tomography

The paper examines the internal structure of overburden diabase specimens from the Pavlovskoye ore deposit. Petrographic and elemental analyzes were performed using a scanning electron microscope. The physical and mechanical parameters of the specimens were evaluated, including the ultimate uniaxial compressive strength, the ultimate tension strength, the modulus of elasticity, and Poisson’s ratio. The internal structure of the specimens was examined with X-ray and laser-ultrasonic tomography. We used a Bruker SkyScan tomograph with an X-ray source of 130 kV and a flat detector. The maximum size of the object under study was 140 mm, the resolution was not worse than 20 μm. The closed porosity was estimated, ranging from 0.01 to 1.38 %; the open porosity was from 0.32 to 0.48 %. Images of the internal structure of the diabase specimens were produced by a laser ultrasonic tomograph with a multichannel optoacoustic antenna. The images are given in three mutually perpendicular planes. We determined the geometry of internal defects, such as cracks about 200—300 microns long, related to decompaction between grains. It is shown that the dynamic elastic moduli can be determined from precise elastic wave velocity measurements.

Keywords: core, diabase, X-ray tomography, laser-ultrasound tomography, internal structure, electron microscopy, porosity, physical and mechanical properties.
For citation:

Galunin A. A., Stepanov G. D., Bezrukov V. I., Svoboda P., Kravcov A. N. Research of the internal structure of diabase samples by optical-acoustic and computer x-ray tomography. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):16—25. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_16.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 16-25
ISBN: 0236-1493
UDK: 620.179.18+552.122
DOI: 10.25018/0236_1493_2021_41_0_16
Article receipt date: 20.01.2021
Date of review receipt: 17.02.2021
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

Galunin A. A.1, PhD-student, galunin.andrew@yandex.ru;
Stepanov G. D.1, student;
Bezrukov V. I.1, student;
Svoboda P.2, PhD;
Kravcov A. N.2, PhD;
1 National Research Technological University “MISiS” Mining Institute, Moscow, Russia;
2 Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic.

 

For contacts:
Bibliography:

1. Esmailzadeh A. Behnam S. Mikaeil R. Relationship between Texture and Uniaxial Compressive Strength of Rocks. Civil engineering journal, 2017, Vol. 3, pp. 480—486. DOI: 10.28991/cej-2017—00000106.

2. Kravcov A. Ivanov P. N. Malinnikova O. N. Cherepetskaya E. B. Gapeev A. A. Laserultrasonic spectroscopy of the pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019, no. 6, pp. 56—65. DOI: 10.25018/0236-1493-2019-06-0-56-65. [In Russ].

3 Kochanov A. N. On the issue of microcracks and their study on the example of rocks. Vestnik rossiyskikh universitetov. Matematika. 2016. no. 3. pp. 798—801 DOI: 10.20310/1810—0198—2016—21—3-798—801 [In Russ].

4. Yamaletdinova K. S. Goc S. S. Hakimov R. M. Yamaletdinova A. A. Hafizov A. R. Study of the porosity of rocks by scanning probe microscopy. Neftegazovye tekhnologii i novye materialy. Problemy i resheniya: sbornik nauchnyh trudov. 2015, pp. 264—265. [In Russ].

5. Bychkov A. S. Zarubin V. P. Karabutov A. A. Simonova V. A. Cherepetskaya E. B. On the use of an optoacoustic and laser ultrasonic imaging system for assessing peripheral intravenous access. Photoacoustics, 2017, Vol. 5, pp. 10—16. DOI: 10.1016/j. pacs.2017.01.002.

6. Kravcov A. Shibaev I. A. Blokhin D. I. Bychkov A. S. Cherepetskaya E. B. Krapivnoi M. M. Zarubin V. P. Examination of structural members of aerial vehicles by laser ultrasonic structuroscopy. International Journal of Civil Engineering and Technology, 2018, Vol. 9, pp. 2258—2265.

7. Kravcov A. Svoboda P. Konvalinka A. Cherepetskaya E. B. Sas I. E. Morozov N. A. Zatloukal J. Koťatkova J. Evaluation of crack formation in concrete and basalt specimens under cyclic uniaxial load using acoustic emission and computed X-Ray Tomography. Key Engineering Materials, 2017, Vol. 722, pp. 247—253. DOI: 10.4028/www.scientific.net/ KEM.722.247.

8. Eremenko N. M. Muraveva Y. A. Application of X-ray microtomography methods to determine porosity in well core. Neftegazovaya geologiya. Teoriya i praktika. 2012, Vol. 3, pp. 1—12. [In Russ].

9. Galkin S. V. Efimov A. A. Krivoshchekov S. N. Savickij Ya. V. Cherepanov S. S. Application of the X-ray tomography method in petrophysical studies of core samples from oil and gas fields. Geologiya i geofizika. 2015, Vol. 5, pp. 995—1007. [In Russ].

10. Karabutov A. A. Podymova N. B. Cherepetskaya E. B. Determination of uniaxial stresses in steel structures by the laser-ultrasonic method. Journal of Applied Mechanics and Technical Physics, 2017, Vol. 58, pp. 503—510. DOI: 10.1134/S0021894417030154.

11. Liu X. S. Tan Y. L. Ning J. G. Lu Y. W. Gu Q. H. Mechanical properties and damage constitutive model of coal in coal-rock combined body. International Journal of Rock Mechanics and Mining Sciences, 2018, Vol. 110, pp. 140—150. DOI: 10.3390/sym11081040.

12. Zhu J. B. Zhou T. Liao Z. Y. Sun L. Chen R. Replication of internal defects and investigation of mechanical and fracture behavior of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography. International Journal of Rock Mechanics and Mining Sciences, 2018, Vol. 106, pp. 198—212. DOI: 10.1016/j. ijrmms.2018.04.022.

13. Schindler M. Batzle M. L. Prasad M. Micro X-Ray computed tomography imaging and ultrasonic velocity measurements in tetrahydrofuran-hydrate-bearing sediments. Geophysical Prospecting, 2017, Vol. 65, pp. 1025—1036. DOI: 10.1111/1365-2478.12449.

14. Bychkov A. S. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Laser optoacoustic tomography for the study of femtosecond laser filaments in air. Laser Physics Letters, 2016, Vol. 13, no. 8, pp. 085401—085405. DOI: 10.1088/1612-2011/13/8/085401.

15. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Mironova E. A. Shibaev I. A. Vysotin N. G. Morozov D. V. Internal structure research of shungite by broadband ultrasonic spectroscopy. Key Engineering Materials, 2017, Vol. 755, pp. 242—247. DOI:10.4028/www. scientific.net/KEM.755.242.

16. Grigoriev, K. S. Kuznetsov, N.Yu. Cherepetskaya, E. B. Makarov, V. A. Second harmonic generation in isotropic chiral medium with nonlocality of nonlinear optical response by heterogeneously polarized pulsed beams. Optics Express, 2017, Vol 25, Issue 6, pp. 6253—6262. DOI: 10.1364/OE.25.006253.

17. Kravcov A. Konvalinka A. Vinnikov V. A. Ertuganova E. A. Shibaev I. A. Ivanov P. N. On the issue of typical grain size assessment by the methods of broadband laser optoacoustics. Key Engineering Materials, 2017, Vol. 755, pp. 212—218.

18. Latief F. D. E. Mohamma I. H. Rarasati A. D. Digital 3D microstructure analysis of concrete using X-Ray micro computed tomography SkyScan 1173: A Preliminary Study. IOP Conference Series: Materials Science and Engineering, 2017, Vol. 267, no. 012020. DOI: 10.1088/1757—899X/267/1/012020.

19. Bychkov A. S. Cherepetskaya E. B. Karabutov A. A. Makarov V. A. Improvement of Image Spatial Resolution in Optoacoustic Tomography with the Use of a Confocal Array. Acoustical Physics, 2018, Vol. 64, pp. 77—82.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.