Timing of mine rescue operations under high air temperatures

The risks imposed on mine rescue teams when working in gas and heat protection units in a heating-up microclimate are listed, the comparative analytical results on standard lengths of mine rescue operations in 8 countries (Russia, Great Britain, Canada, Australia, Germany, Czechia, Poland and South Africa) are presented with regard to scientific experimental investigations–justifications, and respirators and heat protective suits used by mine rescuers in different countries are compared. It is found that operation of mine rescuers in gas and heat protection outfit induces risks of dewatering and hyperthermia. In Russia, the period of a mine rescue operation, other conditions being equal, is longer than in the other countries, except for South Africa where the mine rescue operation length exceeds all science-based standards. It is determined that R-30 respirator, though a simple and convenient device, is old-fashioned as compared with its foreign analogs (Dräger BG4 and Biomarine Biopak 240R). Vice versa, Don2 heat protective suit with ice water cooling elements is better adaptable to mine rescuing as against Dräger cooling vest CVP 5220 with salt crystal mixture packed in polyester/polyamide as a cooling element.

Keywords: mine rescuers, heating-up microclimate, gassed air, regulatory control, international experience, technique, regenerative respirator, heat protective suit, operation period length, operation safety.
For citation:

Perestoronin M. O., Zaitsev A. V., Parshakov O. S. Timing of mine rescue operations under high air temperatures. MIAB. Mining Inf. Anal. Bull. 2025;(8):144-163. [In Russ]. DOI: 10.25018/0236_1493_2025_8_0_144.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation under the state contract, R&D Registration No. НИОКТР 121111800053-1.

Issue number: 8
Year: 2025
Page number: 144-163
ISBN: 0236-1493
UDK: 622.8
DOI: 10.25018/0236_1493_2025_8_0_144
Article receipt date: 21.01.2025
Date of review receipt: 27.02.2025
Date of the editorial board′s decision on the article′s publishing: 10.07.2025
About authors:

M.O. Perestoronin1, Graduate Student, Engineer, e-mail: maksim.o.perestoronin@yandex.ru, ORCID ID: 0009-0003-0203-9304,
A.V. Zaitsev1, Dr. Sci. (Eng.), Professor, Perm National Research Polytechnic University, 614990, Perm, Russia; Head of Laboratory, e-mail: artem.v.zaitsev@yandex.ru, ORCID ID: 0000-0002-2314-0482,
O.S. Parshakov1, Cand. Sci. (Eng.), Researcher, e-mail: olegparshakov@gmail.com, ORCID ID: 0000-0001-5545-442X,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

M.O. Perestoronin, e-mail: maksim.o.perestoronin@yandex.ru.

Bibliography:

1. Golik A. S., Popov V. B., Yarosh A. S., Oguretskiy V. A., Oguretskiy V. V., Oguretskiy A. V. Mining rescue cases in Russia. Bulletin of Research Center for Safety in Coal Industry. 2019, no. 1, pp. 42—49. [In Russ].

2. Kostenko T. V. Otsenka riskov i povyshenie bezopasnosti gornospasatel'nykh rabot v shakhtakh, opasnykh po gazu [Risk assessment and improvement of the safety of mining res-cue operations in gashazardous mines], Candidate’s thesis, Donetsk, 2011, 23 p.

3. Chowaniec C., Kobek M., Chowaniec M., Skowronek R., Nowicka J. Ocena mechanizmu i przyczyny śmierci ratowników górniczych podczas wypadku zbiorowego w Kopalni Wegla Kamiennego «Niwka-Modrzejów» w Sosnowcu w 1998 roku. Archiwum medycyny sadowej i kryminologii. 2011, vol. 61, no. 4, pp. 319—330.

4. Margaria R. Positive and negative work performances and their efficiencies in human locomotion. Internationale Zeitschrift für Angewandte Physiologie, Einschliesslich Arbeitsphysiologie. 1968, vol. 25, no. 4, pp. 339—351. DOI: 10.1007/BF00699624.

5. Snellen J., Chang K. Calorimeter ergometer for concentric and eccentric work. Medical & Biological Engineering & Computing. 1981, vol. 19, no. 3, pp. 356—358. DOI: 10.1007/BF02442557.

6. Azhaev A. I. On hygienic rationing of the microclimate of some industries with increased heat generation. Gigiena i sanitariya. 1985, no. 6, pp. 70—72. [In Russ].

7. Jay O., Brotherhood J. Occupational heat stress in Australian workplaces. Temperature (Austion). 2016, vol. 3, no. 3, pp. 394—411. DOI: 10.1080/23328940.2016.1216256.

8. Lazaro P., Momayez M. Heat stress in hot underground mines: A brief literature review. Mining, Metallurgy & Exploration. 2021, vol. 38, pp. 497—508. DOI: 10.1007/s42461-020-00324-4.

9. Zaslavskaya R. M., Shcherban' E. A., Teiblyum M. M. The influence of mete-orological and geomagnetic factors on the human cardiovascular system. International Independent Scientific Journal. 2021, no. 23-1, pp. 5—15.

10. Semenova N. A. About dehydration of the human body and ways to restore its work. Prioritety i perspektivy ekologo-ekonomicheskogo razvitiya: regional'niy i munitsipal'niy aspekty: Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii [Priorities and prospects of ecological and economic development: regional and munici-pal aspects. Materials of the international scientific and practical Conference], Moscow, 2018, pp. 191—194. [In Russ].

11. Smith J., Johnson L. The factors affecting heat stress in industrial workers exposed to extreme heat: A case study of methodology. Journal of Occupational Health and Safety. 2020, vol. 15, no. 3, pp. 45—60.

12. Dmitrakovich N. M., Zhuk D. V. Analytical review of heat and mass transfer models in protective clothing. Vestnik Universiteta grazhdanskoj zashchity MChS Belarusi. 2021, no. 5(3), pp. 352—365. [In Russ].

13. Kir'yan A. P. Mathematical model of heat exchange processes in a lifeguard suit with cryogenic cooling system. Aktual'nye problemy pozharnoy bezopasnosti: Materialy XXXVI Mezhdunarodnoy nauchno-prakticheskoy konferentsii, posvyashchennoy 375-y godovshchine obrazovaniya pozharnoy okhrany Rossii [Current fire safety issues. Materials of the XXXVI International Scientific and Practical Conference dedicated to the 375th anniversary of the Formation of the Russian Fire Department], Moscow, 2024, pp. 706—711. [In Russ].

14. Makukhin D. V., Pletenskii YU. G., Raikhman S. P., Rimskaya L. M. Ration-ing of the microclimate and duration of work when using personal protective equipment. Gigiena i sanitariya. 1982, no. 12, pp. 65—68. [In Russ].

15. Zavyalov G. V. Preparation of gas and smoke defenders of the Ministry of Emergency Situations of the DR. Vestnik Akademii grazhdanskoy zashchity. 2020, no. 3(23), pp. 41—47. [In Russ].

16. Batanin F. K., Mukhacheva L. V., Evseenkov S. M., Vyuzhenko D. L. The specifics of mining rescue operations at high temperatures. Bezopasnost' tekhnologicheskikh protsessov i proizvodstv: Trudy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Safety of technological processes and productions. Materials of the International Scientific and Practical Conference], Ekaterinburg, UGGU, 2019, pp. 13—18. [In Russ].

17. Onifade M., Genc B., Said K. O., Fourie M., Akinseye P. O. Overview of mine rescue approaches for underground coal fires: A South African perspective. Journal of the Southern African Institute of Mining and Metallurgy. 2022, vol. 122, no. 5, pp. 213—226. DOI: 10.17159/2411-9717/1738/2022.

18. Sudilovskiy M. N., Kolyshenko M. V., Eyner F. F. Preduprezhdenie i likvidatsiya avariy v shakhtakh FRG [Prevention and elimination of accidents in the mines of Germany], Moscow, Nedra, 1988, 144 p.

19. Marszałek A., Bartkowiak G., Dąbrowska A. Mine rescuers' heat load during the expenditure of physical effort in a hot environment, using ventilated underwear and selected breathing apparatus. International Journal of Occupational Safety and Ergonomics. 2018, vol. 24, no. 1, pp. 1—13. DOI: 10.1080/10803548.2017.1335971.

20. Roy S., Mishra D. P., Agrawal H., Bhattacharjee R. M. Heat stress in underground mines and its control measures: A systematic literature review and retrospective analysis. Mining Metallurgy & Exploration. 2022, vol. 39, pp. 357—383. DOI: 10.1007/s42461-021-00532-6.

21. Mustafina M. KH., Chernyak A. V. Measurement of exhaled air temperature (literature review). Prakticheskaya pul'monologiya. 2012, no. 4, pp. 31—34. [In Russ].

22. Nikolaeva V. M. Application features of the R-30 insulating regenerative respirator. Voprosy nauki. 2022, no. 4, pp. 75—79. [In Russ].

23. Kyriazi N. Performance comparison of rescue breathing apparatus. The National Institute for Occupational Safety and Health (NIOSH). 1999, pp. 34.

24. Mamaev V. V. Obosnovanie parametrov protivoteplovoy zashchity spasatelya s okhlazhdeniem protochnoy vodoy [Justification of the parameters of the lifeguard's thermal protection with running water cooling], Candidate’s thesis, Donetsk, 2019, 20 p.

25. Chernova I. V. Antithermal suits — new developments in the field of labor protection for mountain rescuers.Occupational Safety in Industry. 2008, no. 4, pp. 13—16. [In Russ].

26. Zavyalova E. L., Zavyalov G. V. Development of an anti-thermal suit with wa-ter cooling. Occupational Safety in Industry. 2023, no. 11, pp. 78—83. [In Russ]. DOI: 10.24000/0409-2961-2023-1178-83.

27. Zav'yalov G. V. Water cooling parameters of the lifeguard's thermal protection suit. Nauchniy vestnik NIIGD «Respirator». 2016, no. 4(53), pp. 93—101. [In Russ].

28. Alab'ev V. R., Zav'yalov G. V. Mathematical model of heat exchange process-es in a rescuer's anti-heat suit with active cooling. Journal of Mining Institute. 2018, vol. 231, pp. 326—332. [In Russ]. DOI: 10.25515/PMI.2018.3.326.

29. Lubosz A., Smoliło J., Chmiela M., Chmiela A., Gajdzik M., Smoliński A. Assessment of the benefits of cooling vests on working conditions of mine operators in hard climatic conditions: A case study. Journal of Industrial Safety. 2024, vol. 1, no. 1, article 100001. DOI: 10.1016/j.jinse.2024.100001.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.