Bibliography: 1. Panteleev I. A., Lyakhovsky V., Mubassarova V. A., Karev V. I., Shevtsov N. I., Shalev E. Tensor compaction of porous rocks: theory and experimental verification. Journal of Mining Institute. 2022, vol. 254, pp. 234—243. [In Russ]. DOI: 10.31897/PMI.2022.30.
2. Ilyinov M. D., Korshunov V. A., Pospekhov G. B., Shokov A. N. Complex experimental studies of mechanical properties of rocks: problems and solutions.Gornyi Zhurnal. 2023, no. 5, pp. 11—18. [In Russ]. DOI: 10.17580/gzh.2023.05.02.
3. Penkov G. M., Karmansky D. A., Petrakov D. G. Studying the dependencies between the sandstone physical and mechanical properties and the elastic wave velocity. Perm Journal of Petroleum and Mining Engineering. 2020, vol. 20, no. 1, pp. 27—36. [In Russ]. DOI: 10.15593/2224-9923/2020.1.3
4. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of the deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servo-hydraulic loading. Journal of Mining Institute. 2022, vol. 256, pp. 539—548. [In Russ]. DOI: 10.31897/PMI.2022.87.
5. Mansouri H., Ajalloeian R. Mechanical behavior of salt rock under uniaxial compression and creep tests. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 110, pp. 19—27. DOI: 10.1016/j.ijrmms.2018.07.0.
6. Rubchevsky Yu. I., Bazhukov A. A. Determination of strength and deformation characteristics of the Yakovlevsky mine laying array. In the world of scientific discoveries. 2015, no. 12-3(72), pp. 908—921. [In Russ]. EDN: VSSLSN.
7. Rylnikova M. V., Sakharov E. M., Esina E. N. Prospects for improving the methods of fastening mine workings in salt rocks of different strength. News of the Tula state university. Sciences of Earth. 2023, no. 3, pp. 268—279. [In Russ]. EDN: IUEPOM.
8. Lukyanov V. G., Tretenkov I. V. Investigation of the influence of geomechanical factors and the development of ways to increase the stability of rock outcrop in conducted horizontal mine workings. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2007, vol. 311, no. 1, pp. 97—102. [In Russ]. EDN: JVNEYN.
9. Smirnov O. V., Kulik A. I. Prospects for application of acoustic control over rock mass state and prediction of dynamic events. MIAB. Mining Inf. Anal. Bull. 2017, no. 5, pp. 352—359. [In Russ]. EDN: YMHNZX.
10. Hussain M., Amao A. O., Al-Ramadan K., Negara A., Saleh T. A. Non-destructive techniques for linking methodology of geochemical and mechanical properties of rock samples. Journal of Petroleum Science and Engineering. 2020, vol. 195, article 107804. DOI: 10.1016/j.petrol.2020.107804.
11. Kharisov T. F., Panzhin A. A., Kharisova O. D. On the problems of the express method for determining the strength of rocks. Minerals and Mining Engineering. 2019, no. 7, pp. 86—91. [In Russ]. DOI: 10.21440/0536-1028-2019-7-86-91.
12. Rubchevsky Yu. I. Experience in the application of methods of non-destructive testing of the laying array at the Yakovlevsky mine. Natural and technical sciences. 2015, no. 3, pp. 86—93. [In Russ]. EDN: TSXDKL.
13. Bondar I. S., Aldekeeva D. T. Determination of concrete strength by shock pulse method. Proceedings of the University. 2019, no. 4, pp. 95—98. [In Russ]. EDN: OIGCMH.
14. Svidzinsky S. A., Muzalevsky M. M., Kovalsky F. I. Gremyachinskoye silvinite deposit. Novye dannye po geologii solenosnykh basseynov Sovetskogo Soyuza [New data on the geology of the saline basins of the Soviet Union], Moscow, 1986, pp. 204—219.
15. Ulybin A. V. On the choice of methods for controlling the strength of concrete of constructed structures. Magazine of civil engineering. 2011, no. 4(22), pp. 10—15. [In Russ]. EDN: NVYMYZ.
16. Chikhunov D. A. Methods and devices of non-destructive testing. Competence. 2005, no. 6(23), pp. 23—29. [In Russ]. EDN: KVDIRZ.
17. Wang M., Wan W. A new empirical formula for evaluating uniaxial compressive strength using the Schmidt hammer test. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 123, article 104094. DOI: 10.1016/j.ijrmms.2019.104094.
18. Hebib R., Belhai D., Alloul B. Estimation of uniaxial compressive strength of North Algeria sedimentary rocks using density, porosity, and Schmidt hardness. Arabian Journal of Geosciences. 2017, vol. 10, pp. 1—13. DOI: 10.1007/s12517-017-3144-4.
19. Umanskii A., Gogolinskii K., Syasko V., Golev A. Modification of the Leeb impact device for measuring hardness by the dynamic instrumented indentation method. Inventions. 2022, vol. 7, no. 1, article 29. DOI: 10.3390/inventions7010029.
20. Syasko V., Nikazov A. Research and development of metrological assurance elements for leeb hardness measurements. Inventions. 2021, vol. 6, no. 4, article 86. DOI: 10.3390/inventions6040086.
21. Vasiliev A. A. Assessment of concrete strength and its prediction for concrete and reinforced concrete structures. Vestnik Gomel'skogo gosudarstvennogo tekhnicheskogo universiteta im. P.O. Sukhogo. 2005, no. 4(23), pp. 16—22. [In Russ]. EDN: PYVSSD.
22. Kovshar S. N., Hormozi Mehdi Application of non-destructive testing methods for assessing the strength of concrete of long-term operated reinforced concrete structures. Innovatsii v betonovedenii, stroitel'nom proizvodstve i podgotovke inzhenernykh kadrov. Sbornik statey po materialam Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii, posvyashchennoy 100-letiyu so dnya rozhdeniya I.N. Akhverdova i S.S. Ataeva. Ch. 1 [Innovations in concrete science, construction production and training of engineering personnel. Collection of articles based on the materials of the International Scientific and Technical Conference dedicated to the 100th anniversary of the birth of I.N. Akhverdov and S.S. Ataeva. Part 1], Minsk, BNTU, 2016, pp. 107—112. [In Russ].
23. Petukhov V. D., Ryabchikov S. V. Features and types of mechanical, physical and complex non-destructive methods for determining the strength of concrete and analysis of their application. Informatsionno-tekhnologicheskiy vestnik. 2022, no. 1(31), pp. 189—201. [In Russ]. EDN: MDIHUO.
24. Krasnoshchekov Yu. V. A model of the strength of concrete for separation with chipping. The Russian Automobile and Highway Industry Journal. 2021, vol. 18, no. 2(78), pp. 216—224. [In Russ]. DOI: 10.26518/2071-7296-2021-18-2-216-224.
25. Nosov V. V. Appraising the service life of dangerous engineering equipment by acoustic emission diagnosis. Journal of Machinery Manufacture and Reliability. 2020, vol. 49, pp. 1072—1083. DOI: 10.3103/S1052618820120110.
26. Parsajoo M., Armaghani D. J., Mohammed A. S., Khari M., Jahandari S. Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study. Transportation Geotechnics. 2021, vol. 31, article 100652. DOI: 10.1016/j.trgeo.2021.100652.
27. Nefeslioglu H. A. Evaluation of geo-mechanical properties of very weak and weak rock materials by using non-destructive techniques: Ultrasonic pulse velocity measurements and reflectance spectroscopy. Engineering Geology. 2013, vol. 160, pp. 8—20. DOI: 10.1016/j.enggeo.2013.03.023.
28. Alimov A. G., Karpunin V. V. Modern methods of ultrasonic diagnostics of concrete and reinforced concrete structures of structures operated in conditions of high water saturation and low temperatures for the prevention of emergency situations. Civil security technology. 2006, vol. 3, no. 3, pp. 36—44. [In Russ]. EDN: KRSIND.
29. Kharisov T. F. Evaluation of the ultimate strength of rocks in a sample using a Schmidt hammer. News of the Tula state university. Sciences of Earth. 2020, no. 4, pp. 304—314. [In Russ]. DOI: 10.25635/q9637-9421-1804-p.
30. Koopialipoor M., Noorbakhsh A., Noroozi Ghaleini E., Jahed Armaghani D., Yagiz S. A new approach for estimation of rock brittleness based on non-destructive tests. Nondestructive Testing and Evaluation. 2019. DOI: 10.1080/10589759.2019.1623214.
31. Shibaev I. A., Determination of dynamic elastic modulus of rock samples using various methods of laser ultrasound diagnostics. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 138—147. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_138.
32. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023, vol. 262, pp. 619—627. [In Russ]. EDN: EGDXKM.
33. Belyakov N. A., Morozov K. V., Yemelyanov I. A. Methodology for processing field test data to assess the natural stress state of a mountain range by the ring unloading method. Gornyi Zhurnal. 2023, no. 5, pp. 89—96. [In Russ]. DOI: 10.17580/gzh.2023.05.13.
34. Solov’ev V. A., Aptukov V. N., Vaulina I. B. Support of mining workings in saliferous rocks. MIAB. Mining Inf. Anal. Bull. 2017, no. 2, pp. 344—356. [In Russ]. EDN: YJKLQJ.
35. Koteleva N., Loseva E. Development of an algorithm for determining defects in cast-in-place piles based on the data analysis of low strain integrity testing. Applied Sciences. 2022, vol. 12, no. 20, article 10636. DOI: 10.3390/app122010636.
36. Trofimov A. V., Rumyantsev A. E., Gospodarikov A. P., Kirkin A. P. Non-destructive ultrasonic method of testing the strength of backfill concrete at deep talnakh mines. Tsvetnye Metally. 2020, no. 12, pp. 28—33. [In Russ]. DOI 10.17580/tsm.2020.12.04.
37. Dengaev A., Maksimenko A., Shut K., Novikova A., Eremenko O., Arteev K., Getalov A., Sargin B., Safiullina E. Development of technology for the preparation of heavy-duty concrete mixtures by processing with an ultrasonic multi-frequency acoustic field. Journal of Applied Engineering Science. 2023, vol. 21, no. 3, pp. 917—927. DOI: 10.5937/jaes0-44277.