Change in eco-geochemistry of bottom sediments in copper–pyrite mining area: A case-study of Karabash copper deposits

Development of the mining art in the Soimonov valley commenced in the first half of the 19th century. The technological advance and the growing needs of the industry promoted copper–pyrite mining in the area. Early in the 20th century, a copper smeltery was built in the valley. As a result, the huge amount of copper mining and processing waste have accumulated here by now. The plentiful induced flows from the waste dumps and the gas and dust emission from the mines gave birth to the anomalous zones of high concentrations of heavy metals in depositing media. Such depositing medium as bottom sediments is simultaneously a collector and a source of pollutants. Because of high health risk of direct or indirect interaction with the media–accumulators of pollutants, the eco-geochemistry of such media requires continuous control. During this research, 12 test sites differently located and spaced relative to pollution sources were explored, and bottom sediments were sampled. The samples were subjected to the X-ray diffraction analysis to determine their mineralogical compositions. The quantities of metals were determined from the X-ray spectroscopy. The obtained data were used to calculate geochemical rates of contamination and pollutant accumulation. The correlation dependence between metals contained in the bottom sediments was constructed. The calculated total contamination rate (Zc) allowed identifying local zones of high and extremely high levels of contamination. The enrichment factor (EF) helped distinguish between two groups of minerals: weathering-resistance and manmade. The bottom sediments mostly contain psammitic fractions. They are dominated by original minerals, quart and albite. The authigenic mineral of pyrite is present, as well. The chalcophylic and lithophylic elements in the bottom sediments are the main pollutants. These studies can be beneficial in terms of the ecological safety of the region, and can foster revision of copper–pyrite mining and storage technologies toward a gain in health and improvement of ecological situation.

Keywords: Soimonov valley, Karabash, heavy metals, chalcophylic elements, eco-geochemistry of bottom sediments.
For citation:

Shabanov M. V., Marichev M. S., Minkina T. M., Rajput V. D., Bauer T. V. Change in eco-geochemistry of bottom sediments in copper–pyrite mining area: A case-study of Karabash copper deposits. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):117-134. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_117.


The study was supported by the Russian Science Foundation, Project No 21-77-20089, in Southern Federal University.

Issue number: 5
Year: 2023
Page number: 117-134
ISBN: 0236-1493
UDK: 631.41
DOI: 10.25018/0236_1493_2023_51_0_117
Article receipt date: 10.01.2023
Date of review receipt: 15.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

M.V. Shabanov1, Cand. Sci. (Agric.), Assistant Professor, e-mail:, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail:, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
T.M. Minkina2, Dr. Sci. (Biol.), Professor, Head of Chair, e-mail:, Scopus Author ID: 15063165400, ORCID ID: 0000-0003-3022-0883,
V.D. Rajput2, PhD, Cand. Sci. (Biol.), Leading Researcher, e-mail:, Scopus Author ID: 56516545100, ORCID ID: 0000-0002-6802-4805,
T.V. Bauer2, PhD, Cand. Sci. (Biol.), Senior Researcher, e-mail:, Scopus Author ID: 55928833000, ORCID ID: 0000-0002-6751-8686,
1 Saint-Petersburg State Agrarian University, Saint-Petersburg, Pushkin, Russia,
2 Southern Federal University, 344006, Rostov-on-Don, Russia, 2 Southern Federal University, 344006, Rostov-on-Don, Russia.


For contacts:

M.S. Marichev, e-mail:


1. Boltyrov V. B., Storozhenko L. A., Sapsay M. A. Cumulative ecological impact in the territory of long-term disposal of old mining waste. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 202—217. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_202.

2. Sokolov A. A., Samonova K. V., Umarkhadzhiev M.-K. R. Methodological support for increasing the technological potential in industry according to technological potential level and cyclical development. Journal of Physics: Conference Series. 2022, vol. 2176, no. 1, article 012095. DOI: 10.1088/1742-6596/2176/1/012095.

3. Usmanov A. I., Gorbunov A. V. Change in properties of manmade soil in reclamation using peat–diatomite improver. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 283—294. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_283.

4. Shabanov M. V., Marichev M. S. Assessment of the transformation of natural-territorial complexes in mining technogenesis. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, vol. 331, no. 3, pp. 90—99. [In Russ]. DOI: 10.18799/24131830/2020/3/2535.

5. Sokolov A. A., Fomenko O. A., Ignatev I. V. Development of algorithms for control and control of electric power parameters based on information-measuring system data. Journal of Physics: Conference Series. 2022, vol. 2176, no. 1, article 012076. DOI: 10.1088/17426596/2176/1/012076.

6. Pochechun V. A., Makarov Y. A. Full-scale survey of the Kachkanarsky industrial complex of the Middle Urals and assessment of its impact on the soil. MIAB. Mining Inf. Anal. Bull. 2022, no. 11-1, pp. 68—79. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_68.

7. Elokhin V. A. Geochemical transformation of soil in the influence zone of ash dump in 2006–2020. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 98—110. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_98.

8. Shestopalov V. L., Fomenko V. A., Sokolov A. A., Miroshnikov A. S. Comparative analysis of deformation methods for seismic activity monitoring in mountainous areas of the Black sea coast and Kamchatka. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4. 535—543. [In Russ]. DOI: 10.21177/1998-4502-202113-4-535-543.

9. Gashkina N. A., Tatsii Y. G., Udachin V. N., Aminov P. G. Biogeochemical indication of environmental contamination: a case study of a large copper smelter. Geochemistry International. 2015, vol. 53, no. 3, pp. 253—264. DOI: 10.1134/S0016702915030076.

10. Hechler J., Udachin V., Aminov P., Beckett P. J., Spiers G. A. Efflorescent sulfate minerals of the Karabash mining/smelting area, Ural mountains, Russia. Mineralogy. 2018, vol. 4, no. 4, pp. 96—101.

11. Mayorova L. P., Cherentsova A. A., Krupskaya L. T., Golubev D. A., Kolobanov K. A. Assessment of manmade air pollution due to dusting at mine tailings storage facilities. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 5—20. [In Russ]. DOI: 10.25018/0236-1493-2021-10-5-20.

12. Skopintseva O. V., Ganova S. D., Buzin A. A., Fedotova V. P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gornyi Zhurnal. 2019, no. 12, pp. 76—79. [In Russ]. DOI: 10.17580/gzh.2019.12.16.

13. Williamson B. J., Purvis O. W., Mikhailova I., Udachin V. SEM-EDX analysis in the source apportionment of particulate matter on Hypogymnia physodes lichen transplants around the Cu smelter and former mining town of Karabash, South Urals, Russia. Science of the Total Environment. 2004, vol. 322, no. 1-3, pp. 139—154. DOI: 10.1016/j.scitotenv.2003.09.021.

14. Narayan A., Mora A., Sánchez L., Rosales J. Temporal and spatial variability of heavy metals in bottom sediments and the aquatic macrophyte Paspalum repens of the Orinoco River floodplain lagoons impacted by industrial activities. Environmental Science and Pollution Research. 2020, vol. 27, pp. 37074—37086. DOI: 10.1007/s11356-020-09623-1.

15. Ren R. H., Tao L., Ren J. Spatial distribution and ecotoxicological assessment of heavy metals in bottom sediments of Yellow River from Inner Mongolia, China. Geochemistry International. 2021, vol. 59, no. 13, pp. 1354—1362. DOI: 10.1134/S0016702921100074.

16. Sojka M., Kaluza T., Siepak M., Strzelinski P. Heavy metals concentration in the bottom sediments of the mid-forest reservoirs. Sylwan. 2019, vol. 163, pp. 694—704. DOI: 10.26202/ sylwan.2019038.

17. Kalekar P., Kamble P., Chakraborti S. Heavy metal contamination in surface sediments of the Upper Bhima Basin, Maharashtra, India. Environmental Sustainability. 2022, vol. 5, pp. 507—531. DOI: 10.1007/s42398-022-00252-7.

18. Shabanov M. V. Geochemistry of bottom sediments of the rivers Krasnouralsky promulgation. News of the Ural State Mining University. 2019, no. 3(55), pp. 72—78. [In Russ]. DOI: 10.21440/2307-2091-2019-3-72-78.

19. Plokhov A. S., Kharko P. A., Pashkevich M. A. Effect of tailings storage facility on surface water at copper–pyrite deposit. MIAB. Mining Inf. Anal. Bull. 2021, no. 4, pp. 57—68. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_57.

20. Slukovskii Z. I. Geoecological assessment of small rivers in the big industrial city based on the data on heavy metal content in bottom sediments. Meteorology and Hydrology. 2015, vol. 40, no. 6, pp. 420—426. DOI: 10.3103/S1068373915060084.

21. Muravyeva E. V., Maslennikova N. N., Gibadulina I. I. Features accumulation of heavy metals in the bottom sediments of small rivers. IOP Conference Series Earth and Environmental Science. 2022, vol. 988, no. 3, article 032073. DOI: 10.1088/1755-1315/988/3/032073.

22. Passos E. A., Alves J. C., Santos I. S., Alves J. P. H., Garcia C. A., Costa A. C. Assessment of trace metals contamination in estuarine sediments using a sequential extraction technique and principal component analysis. Microchemical Journal. 2010, vol. 96, no. 1, pp. 50—57. DOI: 10.1016/j.microc.2010.01.018.

23. Linnik V. G., Bauer T. V., Minkina T. M. Mandzhieva S. S, Mazarji M. Spatial distribution of heavy metals in soils of the flood plain of the Seversky Donets River (Russia) based on geostatistical methods. Environmental Geochemistry and Health. 2022, vol. 44, no. 2, pp. 319—333. DOI: 10.1007/s10653-020-00688-y.

24. Slukovsky Z. I., Guzeva A. V., Dauwalter V. A., Udachin V. N., Denisov D. B. Uranium anomalies in modern lake bottom sediments of northern Murmansk region, Arctic. Geokhimiya. 2020, vol. 65, no. 12, pp. 1231—1236. [In Russ]. DOI: 10.31857/S0016752520100131.

25. Savel'ev D. E., Snachev V. I., Savel'eva E. N., Bazhin E. A. Geologiya, petrogeokhimiya i khromitonosnost' gabbro-giperbazitovykh massivov Yuzhnogo Urala [Geology, petrogeochemistry and chromium content of gabbro-hyperbasite massifs of the Southern Urals], Ufa, DizaynPoligrafServis, 2008, 320 p.

26. Rudnic R. L., Gao S. Composition of the continental crust. Treatise on Geochemistry. Elsevier, Amsterdam, 2003, 64 p. DOI: 10.1016/B0-08-043751-6/03016-4.

27. Vinogradov A. P. Geokhimiya redkikh i rasseyannykh elementov v pochvakh [Geochemistry of rare and trace elements in soils], Moscow, Izd-vo AN SSSR, 1957, 237 p.

28. Yanin E. P. Tekhnogennye geokhimicheskie assotsiatsii v donnykh otlozheniyakh malykh rek (sostav, osobennosti, metody otsenki) [Technogenic geochemical associations in bottom sediments of small rivers (composition, features, methods of assessment], Moscow, IMGRE, 2002, 52 p.

29. Buat-Menard P., Chesselet R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter Earth Planet. Earth and Planetary Science Letters. 1979, vol. 42, no. 3, pp. 398—411.

30. Liu W. H., Zhao J. Z., Ouyang Z. Y., Söderlund L., Liu G. H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environment International. 2005, vol. 31, no. 6, pp. 805—812. DOI: 10.1016/j.envint.2005.05.042.

31. Chatterjee M., Silva F. E. V., Sarkar S. K. Distribution andpossible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International. 2007, vol. 33, no. 3, pp. 346—356. DOI: 10.1016/j.envint.2006.11.013.

32. Zhang L., Ye X., Feng H. Jing Y., Ouyang T., Yu X., Liang R., Gao C., Chen W. Heavy metal contamination in Western Xiamen Bay sediments and its vicinity. Marine Pollution Bulletin. 2007, vol. 54, no. 7, pp. 974—982. DOI: 10.1016/j.marpolbul.2007.02.010.

33. Sutherland R. Bed sediment associated trace metals in an urban stream, Oahu, Hawaii. Environmental Earth Sciences. 2000, vol. 39, no. 6, pp. 611—627. DOI: 10.1007/s002540050473.

34. Belogub E. V., Udachin V. N., Korablev V. V. Karabashskiy rudnyy rayon (Yuzhnyy Ural) [Karabashsky ore district (Southern Urals)], Miass, IMin UrO RAN, 2003, 40 p.

35. Chen J., An Z. S., Head J. Variation of Rb/Sr Ratios in the Loess-Paleosol Sequences of Central China during the Last 130,000 Years and Their Implications for Monsoon Paleoclimatology. Quaternary Research. 1999, vol. 51, no. 3, pp. 215—219. DOI: 10.1006/qres.1999.2038.

36. Zhang J., Liu C. L. Riverine composition and estuarine geochemistry of particulate metals in China — weathering features, anthropogenic impact and chemical fluxes. Estuarine Coastal and Shelf Science. 2002, vol. 54, no. 6, pp. 1051—1070. DOI: 10.1006/ecss.2001.0879.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.