Change in fracture toughness of rocks under moderate thermal effect

The article describes the laboratory-scale test data on fracture toughness of different genotype rocks under moderate thermal effect (to 100 °С). Samples of granite, limestone and marble with different size grains were tested. The samples were manufactured as beams with a length of 90 mm (L), width of 20 mm (b) and thickness of 10 mm (t); the parallel misalignment of the faces of the samples was not higher than 0.5% of the fitting linear size of a sample; the samples had a saw cut with a depth of 7 mm (h) and width not more than 1.2 mm (e) to simulate an edge crack in the middle of a sample. After all preparation stages, the samples were examined using ultrasonic defectoscopy to detect internal defects. The purpose-designed plant allowed heating of the test samples during three-point flexural tests. At the temperature from 20 to 80 °С, it was traced how the critical stress intensity factor (fracture toughness)–the characteristic of the fracture strength of materials–changed. The studies neglected the test results if the plane of the main crack in the samples deviated from the plane of the saw cut by 2 mm and more. For another thing, the results deviated from the arithmetic average by 30% were discarded as well. The investigation of the thermal field influence on the ability of samples to resist crack growth exhibited the decrease in this ability with the increasing temperature in all samples of all test types of rocks.

Keywords: strength characteristics, fracture, fracture toughness, normal tension crack, fracture toughness coefficient, moderate thermal effect, bending, three-point flexure, rocks.
For citation:

Vinnikov V. A., Pavlov I. A. Change in fracture toughness of rocks under moderate thermal effect. MIAB. Mining Inf. Anal. Bull. 2024;(3):5-16. [In Russ]. DOI: 10.25018/ 0236_1493_2024_3_0_5.

Acknowledgements:
Issue number: 3
Year: 2024
Page number: 5-16
ISBN: 0236-1493
UDK: 622.023.23+620.174.25+539.421.5
DOI: 10.25018/0236_1493_2024_3_0_5
Article receipt date: 18.12.2023
Date of review receipt: 27.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.02.2024
About authors:

V.A. Vinnikov1, Dr. Sci. (Phys. Mathem.), Assistant Professor, Head of Chair, e-mail: evgeny.vinnikov@gmail.com, ORCID ID: 0000-0002-3011-053X,
I.A. Pavlov1, Graduate Student, e-mail: 3.14alekseevich@gmail.com, ORCID ID: 0009-0005-1011-9819,
1 University of Science and Technology MISIS, 119049, Moscow, Russia.

 

For contacts:

I.A. Pavlov, e-mail: 3.14alekseevich@gmail.com.

Bibliography:

1. Pershin G. D., Pshenichnaya E. G., Mazhitov A. M. Energy criteria for quasi-brittle fracture of rocks in technological processes of mining and primary processing. Russian Mining Industry Journal. 2022, no. 2, pp. 84—89. [In Russ]. DOI: 10.30686/1609-9192-2022-2-84-89.

2. Trofimov V.A., Kubrin S. S., Filippov Yu.A., Kharitonov I. L. Numerical modeling of stress– strain state for host rock mass and thick gently dipping coal seam after mining completion in extraction panel. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 42—56. [In Russ]. DOI: 10.25018/0236-14932019-08-0-42-56.

3. Khloptsov D. V., Vinnikov V.A. Determination of rock pressure on lining of wells. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 74—82. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-74-82.

4. Sas I. E., Cherepetskaya E. B., Pavlov I. A. Solving problems in geomechanics: Comparison of the fidesys strength analysis system and the plaxis software package. Key Engineering Materials. 2017, vol. 755, pp. 238—332. DOI: 10.4028/www.scientific.net/KEM.755.328.

5. You W., Tubing Y., Dengdeng Z., Qiang L., Yongjun C. Research on the effect of thermal treatment on the crack resistance curve of marble using notched semi-circular bend specimen. Theoretical and Applied Fracture Mechanics. 2022, vol. 119, article 103344. DOI: 10.1016/j.tafmec.2022.103344.

6. Kashnikov Yu. A., Ashikhmin S. G., Kukhtinsky A. E., Shustov D. V. On the relationship of crack resistance coefficients and geophysical characteristics of rocks of hydrocarbon deposits. Journal of Mining Institute. 2020, vol. 241, pp. 83—90. [In Russ]. DOI: 10.31897/PMI.2020.1.83.

7. Feng Z., Zhao Y., Liu D. Permeability evolution of thermally cracked granite with different grain sizes. Rock Mechanics and Rock Engineering. 2021, vol. 54, pp. 1953—1967. DOI: 10.1007/s00603-020-02361-3.

8. Guo Q., Su H., Liu J., Yin Q., Jing H., Yu L. An experimental study on the fracture behaviors of marble specimens subjected to high temperature treatment. Engineering Fracture Mechanics. 2020, vol. 225, article 106862. DOI: 10.1016/j.engfracmech.2019.106862.

9. Ouchterlony F. Suggested methods for determining the fracture toughness of rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1988, vol. 25, no. 2, pp. 71—96.

10. Cherepetskaya E. B., BezrukovV. I. Fracturetoughnessunderdifferenttemperatureeffects. MIAB. Mining Inf. Anal. Bull. 2023, no. 1, pp. 49—58. [In Russ]. DOI: 10.25018/0236_1493_2023_1_0_49.

11. Su H., Jing H., Yu L., Yin Q., Han G. Mode I fracture behaviour of sandstone after heat treatment. Géotechnique Letters. 2017, vol. 7, no. 1, pp. 47—52. DOI: 10.1680/jgele.16.00136.

12. Shihao Y., Qiang S., Pengfei L., Jishi G., He Z. Fracture properties and dynamic failure of three-point bending of yellow sandstone after subjected to high-temperature conditions. Engineering Fracture Mechanics. 2022, vol. 256, article 108366. DOI: 10.1016/j.engfracmech.2022.108366.

13. Fowell R. J. Suggested method for determining mod. I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1995, vol. 32, no. 1, pp. 57—64. DOI: 10.1016/0148-9062(94)00015-U.

14. Kuruppu M. D., Obara Y., Ayatollahi M. R., Chong K. P., Funatsu T. ISRM-suggested method for determining the mode i static fracture toughness using semi-circular bend specimen. Rock Mechanics and Rock Engineering. 2013, vol. 47, no. 1, pp. 267—274. DOI: 10.1007/s00603-013-0422-7.

15. Ulusay R. The ISRM suggested methods for rock characterization, testing and monitoring: 2007—2014. Bulletin of Engineering Geology and the Environment. 2015, vol. 74, pp. 1499—1500. DOI: 10.1007/s10064-015-0780-3.

16. Schmidt R. A. Fracture-toughness testing of limestone. Experimental Mechanics. 1976, vol. 16, pp. 161—167.

17. Deryugin E. E., Bogdanov A. A. Determination of fracture toughness of samples with a chevron notch using a 3-point bending. Technical Physics Letters. 2021, vol. 47, no. 20, pp. 35—37. [In Russ]. DOI: 10.21883/PJTF.2021.20.51612.18936.

18. Jianping Z., Yulin L., Xiaoyan Z., Zhihong Z., Tingzheng W. The effects of thermal treatments on the subcritical crack growth of Pingdingshan sandstone at elevated high temperatures. Rock Mechanics and Rock Engineering. 2018, vol. 51, pp. 3439—3454. DOI: 10.1007/s00603-018-1527-9.

19. Fan X., Lin H., Cao R. Bending properties of granite beams with various section-sizes in threepoint bending tests. Geotechnical and Geological Engineering. 2019, vol. 37, pp. 1—11. DOI: 10.1007/ s10706-018-0504-0.

20. Pavlov I. A., Vinnikov V. A., Pavlov K. A. Laboratory installation for studying the fracture toughness of reservoir rocks. Ashirovskiye chteniya. 2023, vol. 2, no. 15, pp. 13—23. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.