Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect

The method of prediction of strength and deformation characteristics of jointed rock mass using numerical finite-element modeling is considered. The sequence of creation of numerical geomechanical model of rock mass is considered, the rock mass is modeled explicitly by the scheme of existing discontinuities in the considered conditions of apatite-nepheline ores deposit, the schemes of conducting virtual tests are offered. The purpose of study of rock mass model behavior is to determine stress distribution dependences in jointed rock mass, to determine model parameters for quantitative estimation of influence of spatial orientation of discontinuities systems on ultimate strength of rock sample. A methodology is described for conducting a series of numerical experiments over a jointed rock mass of various dimensions, where the rock mass environment is specified discretely taking into account the contact mechanical characteristics between rock blocks. The characteristics of the decrease in the strength of a rock mass with an increase in its size were obtained based on the results of virtual tests — with an increase in the area of a jointed rock mass there is the decrease in the values of its mechanical characteristics until the formation of a representative elementary volume.

Keywords: jointed rock mass, discontinuities, numerical modelling, uniaxial compression strength, anisotropy, scale effect, discrete medium, rock sample, geomechanics.
For citation:

Verbilo P. E., Vilner M. A. Study of the jointed rock mass uniaxial compression strength anisotropy and scale effect. MIAB. Mining Inf. Anal. Bull. 2022;(6−2):47—59. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_47.

Issue number: 6
Year: 2022
Page number: 47-59
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2022_62_0_47
Article receipt date: 14.01.2022
Date of review receipt: 13.04.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Verbilo P. E., Cand. Sci. (Eng.), assistant professor,, Russia, St. Petersburg Mining University, 199106, St. Petersburg, 21-ya V. O., 2, e-mail:;
Vilner M.A., postgraduate student, 0000-0002-0424-100X, Russia, St. Petersburg Mining University, 199106, St. Petersburg, line 21 V. O., 2, e-mail:


For contacts:

Verbilo Pavel Eduardovich, e-mail:


1. Protosenya A. G., Kuranov A. D. Procedure of rock mass stress-strain state forecasting in hybrid mining of the Koashvin deposit. Gornyi Zhurnal, 2015, vol. 1, pp. 17–20. [In Russ]. DOI:10.17580/gzh.2015.01.03.

2. Yalin Li, Navid Bahrani. Strength and failure mechanism of highly interlocked jointed pillars: Insights from upscaled continuum grain-based models of a jointed rock mass analogue. Computers and Geotechnics. 2021, vol. 137. 104278. DOI: 10.1016/j.compgeo.2021.104278.

3. Bagautdinov I. I., Belyakov N. A., Kuranov A. D., Streshnev A. A. The reasoning of mining methods parameters toward development of the apatite-nepheline ore deposits based on results of forecast of massif stress state. E3S Web of Conferences. 2018, vol. 56, pp. 1–6. DOI: 10.1051/e3sconf/20185601019.

4. Tyupin V. N., Khaustov V. V. Dependence of the geomechanical state of a fractured massif on the interval of deceleration in the zone of seismic action of mass explosions. MIAB. Mining Inf. Anal. Bull. 2021, vol. 2, pp. 45–54. [In Russ]. DOI: 10.25018/0236-14932021-2-0−45−54.

5. Yingjie Xia, Chuanqing Zhang, Hui Zhou, Jing Hou, Guoshao Su, Yang Gao, Ning Liu, Hemant Kumar Singh. Mechanical behavior of structurally reconstructed irregular columnar jointed rock mass using 3D printing. Engineering Geology. 2020, vol. 268. 105509. DOI: 10.1016/j.enggeo.2020.105509.

6. Qing-Xiang Meng, Huan-Ling Wang, Wei-Ya Xu, Yu-Long Chen. Numerical homogenization study on the effects of columnar jointed structure on the mechanical properties of rock mass. International Journal of Rock Mechanics and Mining Sciences. 2019, vol. 124. 104127. DOI: 10.1016/j.ijrmms.2019.104127.

7. Raimzhanov B. R., Khasanov A. R. Estimation of structural disturbance of a rock mass according to rating classifications for the mines of the Zarmitan gold ore zone. MIAB. Mining Inf. Anal. Bull. 2020, vol. 5, pp. 115–127. DOI: 10.25018/0236-1493-2020-5-0−115−127.

8. Sayedalireza Fereshtenejad, Jae-Joon Song. Applicability of powder-based 3D printing technology in shear behavior analysis of rock mass containing non-persistent joints. Journal of Structural Geology. 2021, vol. 143. 104251. DOI: 10.1016/j.jsg.2020.104251.

9. Jing L., Min K. B., Baghbanan A. Stress and scale-dependency of the hydro-mechanical properties of fractured rock. Rock mechanics new research. 2009, pp. 109–165.

10. Jing L. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences. 2003, vol. 40, no. 3, pp. 283–353. DOI: 10.1016/S1365−1609(03)00013−3.

11. Hoek E., Brown E. T. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences. 1997, vol. 34, no. 8, pp. 1165–1186. DOI:10.1016/ S1365−1609(97)80069-X.

12. Tianhong Yang, Peitao Wang, Tao Xu, Qinglei Yu, Penghai Zhang, Wenhao Shi, Gaojian Hu. Anisotropic characteristics of jointed rock mass: A case study at Shirengou iron ore mine in China. Tunnelling and Underground Space Technology. 2015, vol. 48, pp. 129–139. DOI: 10.1016/j.tust.2015.03.005.

13. Shuangjian Niu, Hongwen Jing, Kun Hu, Dafang Yang. Numerical investigation on the sensitivity of jointed rock mass strength to various factors. MIAB. Mining Science and Technology. 2010, vol. 20, no. 4, pp. 530–534. DOI: 10.1016/S1674−5264(09)60238−6.

14. Protosenya A. G., Verbilo P. E. Research of compression strength of fissured rock mass. Journal of Mining Institute. 2017, vol. 223, pp. 51–57. DOI: 10.18454/PMI.2017.1.51.

15. Subash Bastola, Ming Cai. Investigation of mechanical properties of jointed granite under compression using lattice-spring-based synthetic rock mass modeling approach. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 126. 104191. DOI: 10.1016/j.ijrmms.2019.104191.

16. Hang Lin, Shijie Xie, Rui Yong, Yifan Chen, Shigui Du. An empirical statistical constitutive relationship for rock joint shearing considering scale effect. Comptes Rendus Mécanique. 2019, vol. 347, iss. 8, pp. 561–575. DOI: 10.1016/j.crme.2019.08.001.

17. Jiayi Shen, Zheng Shu, Ming Cai, Shigui Du. A shear strength model for anisotropic blocky rock masses with persistent joints. International Journal of Rock Mechanics and Mining Sciences. 2020, vol. 134. DOI: 10.1016/j.ijrmms.2020.104430.

18. Rats М. V. Discontinuities and rock sample properties. Moscow, “Nedra”, 1970, 164 p. [In Russ]

19. Verbilo P., Karasev M., Belyakov N., Iovlev G. Experimental and numerical research of jointed rock mass anisotropy in a three-dimensional stress field. Rudarsko Geolosko Naftni Zbornikthis. 2022, vol. 37, no. 2, pp. 109–122. DOI: 10.17794/rgn.2022.2.10.

20. Adigamov A. E., Yudenkov A. V. Stress–strain behavior model of disturbed rock mass with regard to anisotropy and discontinuities. MIAB. Mining Inf. Anal. Bull. 2021, vol. 8, pp. 93–103. [In Russ]. DOI: 10.25018/0236_1493_2021_8_0_93.

21. Xu-Xu Yang, Hong-Wen Jing, Chun-An Tang, Sheng-Qi Yang. Effect of parallel joint interaction on mechanical behavior of jointed rock mass models. International Journal of Rock Mechanics and Mining Sciences. 2017, vol. 92, pp. 40–53. DOI: 10.1016/j. ijrmms.2016.12.010.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.