Investigation of tectonic faults in coal seams using horizontal directional drilling from temporary roadways

Authors: Grib N.N

Today there are many methods to predict tectonic faults within the limits of mine fields. However, the data provided by these methods are not always sufficiently accurate and reliable. As a consequence, faults are often located when uncovering coal seams or even in the course of longwalling. In Inagli Mine in Yakutia, the tectonic faulting of coal seam D15 was investigated at the stage of the seam preparation for mining using an innovative approach— horizontal directional drilling from temporary roadways. The goal was to survey in detail the tectonic structure of the mine field. Drilling involved no core sampling but included recording of zenith and azimuth angles at an interval of 3 m, as well as the gamma ray logging in real time. In this manner, the direct source of the geological information is drill cuttings. All in all, 4 holes with 65 branches were drilled. The main factors for location of tectonic faults were: the vertical displacements in the seam roof, the leaps in the dip and thickness of the seam, the technology factors of drilling (circulation fluid consumption, drilling tool seizure, etc.). Based on the information obtained during drilling in the test site, the actual elevations were determined, and the hypsometric map of the floor of coal seam D15 was plotted. It is found that the test site is complicated with the low-amplitude tectonic faults, including both plicative and disjunctive dislocations. A fault displacement with an amplitude of 6.4 m and a flexure with an amplitude of 24 m are revealed.

Keywords: tectonic faults, horizontal directional drilling, gamma ray logging, coal seam floor hypsometry.
For citation:

Grib N. N. Investigation of tectonic faults in coal seams using horizontal directional drilling from temporary roadways. MIAB. Mining Inf. Anal. Bull. 2024;(2):35-50. [In Russ]. DOI: 10.25018/0236_1493_2024_2_0_35.

Acknowledgements:
Issue number: 2
Year: 2024
Page number: 35-50
ISBN: 0236-1493
UDK: 622.14
DOI: 10.25018/0236_1493_2024_2_0_35
Article receipt date: 29.05.2023
Date of review receipt: 04.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.01.2024
About authors:

N.N. Grib, Dr. Sci. (Eng.), Professor, Deputy Director for Research, Neryungri Technical Institute (branch) of North-Eastern Federal University, 678960, Neryungri, Russia, e-mail: grib-n-n@yandex.ru, ORCID ID: 0000-0001-9237-0292, Scopus ID: 55769374800.

 

For contacts:
Bibliography:

1. Kalinchenko V. M., Shurygin D. N., Efimov D. A. Prognozirovanie melkoamplitudnoy narushennosti ugol'nykh plastov: monografiya [Prediction of small-amplitude disturbance of coal seams: monograph], Novocherkassk, YuRGPU (NPI), 2013, 131 p.

2. Shabel'nikov S. I. Prediction of low-amplitude tectonic fissures of coal seams in the conditions of underground mine workings in the preparation of panels. Forum Gіrnikіv, 2013: Materіali Mіzhnarodnoi Konferencii, vol. 4. Dnіpropetrovs'k, 2013, pp. 32—37. http://ir.nmu.org.ua/handle/1234 56789/150154.

3. Shabel'nikov S. I. Prediction of low-amplitude tectonic ruptures of coal seams at mine workings drivage. Gornyi Zhurnal. 2017, no. 12, pp. 21—24. [In Russ]. DOI: 10.17580/gzh.2017.12.04.

4. Bajkenzhina A. Zh. Detection and mapping of tectonic disturbances as indicators of outburst hazard zones by MOGT-3D method detailed prospecting in the conditions of the Qaraghandy coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018, vol. 329, no. 8, pp. 145—155. [In Russ]. http://earchive.tpu.ru/handle/11683/50264.

5. Gyulai A., Dobróka M., Tormos T., Turai E., Savari T. In-mine Geoelectric Investigations for Detecting Tectonic Disturbances in Coal Seam Structures. Acta Geophysica. 2013, vol. 61, no. 5, pp. 1184—1195. DOI: 10.2478/s11600-013-0112-6.

6. Gaysin R. M., Tsarikov A. Yu. Location of damage zones in coal seams by underground resistivity prospecting. MIAB. Mining Inf. Anal. Bull. 2019, no. 6, pp. 19—26. [In Russ]. DOI: 10.25018/02361493-2019-06-0-19-26.

7. Abdrakhmanov M. I., Lapin S. E., Shnaider I. V. Creation of a digital model of extraction pillar by the reflection seismic surveying method. MIAB. Mining Inf. Anal. Bull. 2022, no. 11-2, pp. 148—158. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_148.

8. Antsiferov A. V., Glukhov A. A., Antsiferov V. A. Mine seismic prediction of tectonic faults by reflected waves using the method of location. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 131—139. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-131-139.

9. Nan Wang, Zijian Wang, Qianhui Sun and Jian Hui Coal mine goaf interpretation: Survey, passive electromagnetic methods and case study. Minerals. 2023, vol. 13, no. 3, article 422. DOI: 10.3390/ min13030422.

10. Pisarenko M. V., Tajlakov O. V., Sokolov S. V., Kolmakova A. A. About forecasting low — amplitude disturbances of coal seams. News of the Tula state university. Sciences of Earth. 2022, no. 2, pp. 356—366. [In Russ]. DOI: 10.46689/2218-5194-2022-2-1-356-366.

11. Prykhodchenko V. F., Shashenko O. M., Sdvyzhkova O. O., Prykhodchenko O. V., Pilyugin V. I. Predictability of a small-amplitude disturbance of coal seams in Western Donbas. Scientific Bulletin of National Mining University. 2020, no. 4, pp. 24—29. DOI: 10.33271/nvngu/2020-4/024.

12. Malinnikova O., Uchaev D., Uchaev D., Malinnikov V. The study of coal tectonic disturbance using multifractal analysis of coal specimen images obtained by means of scanning electron microscopy. E3S Web of Conferences. 2019, vol. 129, no. 2, article 01017. DOI: 10.1051/e3sconf/201912901017.

13. Vasil'eva M. A., Katkov S. M. Prediction of possible tectonic disturbance zones in Micromine based on rock strength parameters. Gornyi Zhurnal. 2017, no. 7, pp. 88—91. [In Russ]. DOI: 10.17580/ gzh.2017.07.17.

14. Rodivilov D. B., Nezhdanov A. A., Shtol' A. V. Identification of low-amplitude tectonic faults in the process of drilling horizontal wellbores in the interval of the Lower Berezovskaya subformation of the Medvezhye field (Western Siberia). Jekspozicija Neft' Gaz. 2021, no. 2, pp. 17—20. [In Russ]. DOI: 10.24412/2076-6785-2021-2-17-20.

15. Tianshou Ma, Ping Chen, Jian Zhao Overview on vertical and directional drilling technologies for the exploration and exploitation of deep petroleum resources. Geomechanics and Geophysics for Geo-Energy and Geo-Resources. 2016, vol. 2, pр. 365—395. DOI: 10.1007/s40948-016-0038-y.

16. Saruev L. A., Shadrina A. V., Saruev A. L., Vasenin S. S., Paharev A. V. Prospects for development of technology and facilities of pilot bores horizontal directional drilling for trenchless laying of pipelines. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2019, vol. 330, no. 4, pp. 89—97. [In Russ]. DOI: 10.18799/24131830/2019/4/232.

17. Cai L., Polak M. A. A theoretical solution to predict pulling forces in horizontal directional drilling installations. Tunnelling and Underground Space Technology. 2019, vol. 83, pp. 313—323. DOI: 10.1016/j.tust.2018.09.014.

18. Baosong M. A., Yong C., Jiguo L. I. U. etc. Tunnel accurate geological investigation using long distance horizontal directional drilling technology. Tunnel Construction. 2021, vol. 41, no. 6, pp. 972—978. DOI: 10.3973/j.issn.2096-4498.2021.06.009.

19. Xialin Liu Predicting tunnel groundwater inflow by geological investigation using horizontal directional drilling technology. Advances in Civil Engineering. 2022, vol. 2022, article 6578331. DOI: 10.1155/2022/6578331.

20. Tverdov A. A., Bajsarov Je. Je. Advanced technologies for drilling deviated-horizontal wells in the development of solid minerals. Russian Mining Industry. 2017, no. 3(133), pp. 26—30. [In Russ]. http://imcmontan.ru/upload/imc_tverd7_.pdf.

21. Tianshou Ma, Jinhua Liu, Jianhong Fu, Bisheng Wu Drilling and completion technologies of coalbed methane exploitation: an overview. International Journal of Coal Science & Technology. 2022, no. 9. DOI: 10.1007/s40789-022-00540-x.

22. Leśniak G., Brunner D. J., Topór T., Słota-Valim M., Cicha-Szot R., Jura B., Skiba J., Przystolik A., Lyddall B., Plonka G. Application of long-reach directional drilling boreholes for gas drainage of adjacent seams in coal mines with severe geological conditions. International Journal of Coal Science & Technology. 2022, vol. 9. DOI: 10.1007/s40789-022-00553-6.

23. Rout G., Tailakov O., Zastrelov D., Kolesnichenko S. To the issue of monitoring the length of degasification boreholes. E3S Web of Conferences. 2021, vol. 315, article 01020. DOI: 10.1051/ e3sconf/202131501020.

24. Houben G. J., Collins S., Bakker M. et al. Review: Horizontal, directionally drilled and radial collector wells. Hydrogeol Journal. 2022, vol. 30, pp. 329—357. DOI: 10.1007/s10040-021-02425-w.

25. Ugol'naya baza Rossii, vol. V. Kn. 2. Ugol'nye basseyny i mestorozhdeniya Dal'nego Vostoka Rossii (Respublika Sakha, Severo-Vostok, o. Sakhalin, p-ov Kamchatka) [Russian coal base, vol. V, book 2. Coal basins and deposits of the Russian Far East (Republic of Sakha, Northeast, Sakhalin Island, Kamchatka Peninsula)], Moscow, ZAO «Geoinformmark», 1999, 638 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.