Stability of underground openings in salt rock masses

The study analyzes stresses and strains in rock mass enclosing single underground openings in sylvinite bed at a depth of 1100 m. The roof of the stopes is closely spaced with anhydrite and anhydrite–dolomite rocks, and the floor rocks include carnallite layers. The mathematical modeling was performed by the finite element method analysis of an elasto-visco-plastic model of rock mass in ANSYS. The source parameters of the models were obtained in the lab-scale testing of rock samples. The model was verified using the in-situ instrumental observations of deformation in underground openings. The numerical experiments are implemented for a single stope with an oval arched cross-section 6.0 m wide and 3.7 m high. It is found that stability of a single stope in salt rock mass is conditioned by its cross-section position relative to weak carnallite layer in the floor and strong anhydrite and anhydrite–dolomite layer in the roof. The relations for sizing the post-limiting deformation zones in enclosing rock mass are obtained. It is shown that there exists an optimal thickness of salt rocks to separate the stope roof from anhydrite and anhydrite–dolomite layers. The displacement analysis of exposed rock surface versus time reveals that close-spaced occurrence of anhydrite and anhydrite–dolomite rocks relative to the roof of a stope driven in rock salt changes the behavior of deformation of exposed rock surface. The obtained results are meant for the scientific support of underground mine planning and design.

Keywords: salt rocks, salt rock creep, Mohr–Coulomb criterion, underground openings in salt rocks, underground opening stability, rock salt properties, anhydrite rock properties, anhydrite– dolomite rock properties, stope boundary displacements.
For citation:

Morozov I. A., Pankov I. L., Toksarov V. N. Stability of underground openings in salt rock masses. MIAB. Mining Inf. Anal. Bull. 2021;(9):36-47. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_36.


The study was supported by the Ministry of Science and Education of the Russian Federation within the framework of State Contract No. 075-03-2021-374 dated December 29, 2020, as well as by the Russian Foundation for Basic Research and the Perm Krai Government, Project No. 19-45-590004.

Issue number: 9
Year: 2021
Page number: 36-47
ISBN: 0236-1493
UDK: 622.016
DOI: 10.25018/0236_1493_2021_9_0_36
Article receipt date: 07.04.2021
Date of review receipt: 28.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.08.2021
About authors:

I.A. Morozov, Senior Lecturer, Perm National Research Polytechnic University, 614990, Perm, Russia, e-mail:,
I.L. Pankov1, Cand. Sci. (Eng.), Senior Researcher,
V.N. Toksarov1, Cand. Sci. (Eng.), Senior Researcher,
1 Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.


For contacts:

I.A. Morozov, e-mail:


1. Svidzinskiy S. A., Muzalevskiy M. M., Koval'skiy F. I. Gremyachinskoye silvinite deposit. Novye dannye po geologii solenosnykh basseynov Sovetskogo Soyuza [New data on the geology of the saline basins of the Soviet Union], Moscow, Nauka, 1986, pp. 204–219.

2. Toksarov V. N., Morozov I. A., Beltyukov N. L., Udartsev A. A. Deformation of underground excavations under conditions of the Gremyachinsk potassium salt deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 113–124. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-113-12.

3. Iofis M. A., Esina E. N., Marakov V. E., Chistyakov A. N. Geomechanical criteria for safe mining of the Gremyachinsky potash deposit. Mine Surveying Bulletin. 2011, no. 4, pp. 44–52. [In Russ].

4. Morozov I. A., Udarcev A. A., Pankov I. L. Laboratory deformation testing of salt rocks from the Gremyachinsk and Upper Kama deposits. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 16–28. [In Russ]. DOI: 10.25018/0236-1493-2020-10-0-16-28.

5. Konstantinova S. A., Kramskov N. P., Solov'ev V. A. Nekotorye problemy mekhaniki gornykh porod primenitel'no k otrabotke almaznykh mestorozhdeniy Yakutii [Some problems of rock mechanics in relation to the development of diamond deposits in Yakutia], Novosibirsk,Nauka, 2011, 222 p.

6. Bel'tyukov N. L. Razrabotka skvazhinnogo metoda izmereniya napryazheniy v massive gornykh porod na osnove effekta Kayzera [Development of a downhole method for measuring stresses in a rock mass based on the Kaiser effect], Candidate’s thesis, Perm, GI UrO RAN, 2018, 159 p.

7. Baryakh A. A., Devyatkov S. Y., Samodelkina N. A. Theoretical explanation of conditions for sinkholes after emergency flooding of potash mines. Journal of Mining Science. 2016, vol. 52, no. 1, pp. 36–45. DOI: 10.1134/S1062739116010101.

8. Konstantinova S. A. On a phenomenological model of deformation and destruction of salt rocks under the prolonged action of compressive loads. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1983, no. 3, pp. 8–13. [In Russ].

9. Jianqiang Deng, Yaoru Liu, Qiang Yang, Wei Cui, Yinbang Zhu, Yi Liu, Bingqi Li A viscoelastic, viscoplastic, and viscodamage constitutive model of salt rock for underground energy storage cavern. Computers and Geotechnics. 2019, vol. 119, pp. 1–14. DOI: 10.1016/j.compgeo.2019.103288.

10. Fei Wu, Hao Zhang, Quanle Zou, Cunbao Li, Jie Chen, Renbo Gao Viscoelastic-plastic damage creep model for salt rock based on fractional derivative theory. Mechanics of Materials. 2020, vol. 150, pp. 1–14. DOI: 10.1016/j.mechmat.2020.103600.

11. Stavrogin A. N., Tarasov B. G. Eksperimental'naya fizika i mekhanika gornykh porod [Experimental rock physics and mechanics], Saint-Petersburg, Nauka, 2001, 343 p.

12. Fei Wu, Jie Chen, Quanle Zou A nonlinear creep damage model for salt rock. International Journal of Damage Mechanics. 2018, vol. 28, no. 5, pp. 1–14. DOI: 10.1177/1056789518792649.

13. Ageenko V. A., Skvortsov A. A. Rheological properties of rock salt under super long-term sustained uniaxial loading. MIAB. Mining Inf. Anal. Bull. 2019, no. 11, pp. 27–34. [In Russ]. DOI: 10.25018/0236-1493-2019-11-0-27-34.

14. Bashura A. N. Prognozirovanie sostoyaniya vyrabotok na glubokikh gorizontakh kaliynykh rudnikov Starobinskogo mestorozhdeniya i obosnovanie effektivnykh sposobov okhrany [Forecasting of the state of workings in the deep horizons of the Starobinskoye potash mines and justification of effective methods of protection], Candidate’s thesis, Soligorsk, ZAO «SIPR c OP», 2004, 146 p.

15. Huang Xiao Lan, Chao Yu Studies of hard interlayer’s influence on the creep deformation of salt rock cavity. Advanced Materials Research. 2012, vol. 594–597, pp. 452–455. DOI: 10.4028/

16. Motta G. E., Pinto C. L. New constitutive equation for salt rock creep. Rem Revista Escola de Minas. 2014, vol. 67, no. 4, pp. 397–403. DOI: 10.1590/0370-44672014670165.

17. Pestrenin V. M., Pestrenina I. V., Merzlyakov A. F. Creep of rock salt samples in compression experiments. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2012, no. 1, pp. 119–124. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.