Effect of grain size distribution of blasted rock on WK-35 shovel performance

The article presents the assessment procedure of the effect exerted by the grain size distribution in blasted rock on the performance of WK-35 shovel in loading CAT 793D dump truck. The procedure includes the digital planimetry, photography and video recording of excavation process, and the dispatching control data accumulated during excavation of a blasted block in an open pit mine. The information was accumulated during operation of mining machines on pre-blasted stripping benches in a gold mine. The planimetric data from photography are used to determine the weighted average fraction in blasted rock per shift (in a range of 350–550 mm) and the uniformity factor of blasted rocks (from 1.5 to 2.2). From the studies, the quantitative relationships are set between the grain size distribution in blasted rocks and the performance of WK-35 shovel in loading CAT 793D dump truck. The relationship between the actual capacity per minute of WK-35 shovel in loading CAT 793D dump truck and the weighted average size of blasted rock demonstrates their high interdependence. The relationship between the yield percent of the size larger than 1 m is less intense. The data analysis of WK-35 shovel performance displays an appreciable sensitivity of WK-35 shovel to the pre-blasted rock quality. For instance, the estimated productivity of the shovel according to timekeeping drops by 1.5 times as the weighted average size of blasted rock increases from 350 to 550 mm.

Keywords: drilling and blasting, blasted rock mass, grain size distribution, oversize, planimetric analysis of photographs, excavation, production capacity, WK-35 shovel, dump truck CAT 793D.
For citation:

Marinin M. A., Rakhmanov R. A., Alenichev I. A., Afanasyev P. I., Sushkova V. I. Effect of grain size distribution of blasted rock on WK-35 shovel performance. MIAB. Mining Inf. Anal. Bull. 2023;(6):111-125. [In Russ]. DOI: 10.25018/0236_1493_2023_6_0_111.


The study was supported under the state contract in the sphere of scientific research in 2023, Grant No. FSRRW-2023-0002.

Issue number: 6
Year: 2023
Page number: 111-125
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236_1493_2023_6_0_111
Article receipt date: 23.11.2022
Date of review receipt: 01.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.05.2023
About authors:

M.A. Marinin1, Cand. Sci. (Eng.), Assistant Professor, e-mail: marinin_ma@pers.spmi.ru, ORCID ID: 0000-0002-5575-9343,
R.A. Rakhmanov, Cand. Sci. (Eng.), Researcher, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, e-mail: ruslan1250@mail.ru, ORCID ID: 000-0002-5341-2274,
I.A. Alenichev, Cand. Sci. (Eng.), Drill and Blast Group Head, «Polyus Project» LLC, 660075, Krasnoyarsk, Russia, e-mail: AlenichevIA@polyusgold.com, ORCID ID: 0000-0003-3359-4450,
P.I. Afanasyev1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Afanasev_PI@pers.spmi.ru, ORCID ID: 0000-0001-5271-6121,
V.I. Sushkova1, Research Assistant, e-mail: s171560@stud.spmi.ru,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

M.A. Marinin, e-mail: marinin_ma@pers.spmi.ru.


1. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 11, pp. 1306—1311.

2. Bragin V. I., Kharitonova M. Y., Matsko N. A. A probabilistic approach to the dynamic cut-off grade assessment. Journal of Mining Institute, vol. 251, pp. 617—625. [In Russ]. DOI: 10.31897/PMI.2021.5.1.

3. Yakovlev V. L., Glebov A. V., Bersenyov V. A., Kulniyaz S. S., Ligotskiy D. N. Influence of an installation angle of the conveyor lift on the volumes of mining and preparing work at quarries at the cyclic-flow technology of ore mining. News of the National Academy of Sciences of the Republic of Kazakhstan. Series of Geology and Technical Sciences. 2020, vol. 4, no. 442, pp. 127—137. DOI: 10.32014/2020.2518-170X.93.

4. Fomin S. I., Rodionovhkov S. K., Rodionov A. O. Determining height of benches in open mining of steeply-dipping deposits with consideration of ore losses and dilution. International Journal of Civil Engineering and Technology. 2019, vol. 10, no. 3, pp. 225—233. DOI: 10.34218/IJARET.10.3.2019.023.

5. Zyryanov I. V., Lel Yu. I., Ilbudin D. H., Martynov N. V., Ganiev R. S. Capacity of winning-loading equipment. Izvestiya vysshikh uchebnykh zavedenii. Gornyi zhurnal. 2016, no. 8, pp. 11—20. [In Russ].

6. Makharatkin P. N., Abdulaev E. K., Vishnyakov G. Y., Botyan E. Y., Pushkarev A. E. Increase of efficiency of dump trucks functioning on the basis of justification of their rational speed by means of simulation modeling. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 237—250. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_237.

7. Marinina O. A., Kirsanova N. Y., Nevskaya M. A. Curcular economy models in industry: developing a conceptual framework Energies. Energies. 2022, vol. 15, pp. 9376—9386. DOI: 10.3390/en15249376.

8. Cameron P., Drinkwater D., Pease J. The ABC of Mine to Mill and metal price cycles. Proceedings 13th AusIMM Mill Operators’ Conference. Melbourne: The Australasian Institute of Mining and Metallurgy. 2016, pp. 349—358.

9. McKee D. Understanding mine to mill. Brisbane Australia: Cooperative research centre for optimising resource extraction, 2013, 96 p.

10. Egorov V. V., Volokitin A. N., Ugolnikov N. V., Sokolovskiy A. V. Justification of parameters and technology of drilling and blasting operations to ensure the required lumpiness. Russian Mining Industry. 2021, no. 3, pp. 110—115. [In Russ]. DOI: 10.30686/1609-9192-2021-3-110-115.

11. Opanasenko P. I., Isaychenkov A. B. Optimization of the lumpiness of blasted semi-rock overburden at the Tugnuisky open pit. Gornyi Zhurnal. 2015, no. 9, pp. 25—35. [In Russ]. DOI: 10.17580/gzh.2015.09.12.

12. Repin N. Ya. Vremennaya metodika rascheta parametrov vzryvnoy otboyki porod na ugol'nykh razrezakh [A temporary method for calculating the parameters of explosive rock breaking at coal mines], Moscow, IGD im. A. A. Skochinskogo, 1976, 48 p.

13. Artemyev V. B., Kuletsky V. N., Isaychenkov A. B. Study of factors affecting the performance of the Bucyrus 495HD excavator in the conditions of the Tugnuisky mine. Ugol'. 2014, no. 4, pp. 69—71. [In Russ].

14. Anistratov K. Y. Feasibility study of the effectiveness of the use of EKG-18 rack-and-pinion excavators of PJSC Uralmashzavod at coal mines. Gornoe delo. 2016, no. 3(9), pp. 6—11. [In Russ].

15. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Y. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020, vol. 242, pp. 228—233. [In Russ]. DOI: 10.31897/pmi.2020.2.228.

16. Kuznetsov V. A., Sitnik V. A. Regulation of the degree of crushing of dolerites during blasting. Energeticheskoe stroitel'stvo. 1969, no. 6, pp. 50—53.

17. Kutuzov B. N., Rubtsov V. K. Fizika vzryvnogo razrusheniya gornykh porod [Physics of explosive destruction of rocks], Moscow, MGI, 1970, 178 p.

18. Repin N. Ya. Podgotovka i ekskavatsiya vskryshnykh porod ugol'nykh razrezov [Preparation and excavation of overburden rocks of coal mines], Moscow, Nedra, 1978, 256 p.

19. Moldovan D. V., Chernobai V. I., Kovalevskyi V. N. Solving the issue of regulating the granulometric composition of shattered rock mass depending on the quality of locking explosion products in the explosion cavity. International Journal of Mechanical Engineering and Technology. 2017, vol. 8, no. 11. pp. 1133—1142.

20. Vinogradov Yu. I., Khohklov S. V., Zigangirov R. R., Rakhmanov R. A. To the question of design of drilling and blasting works at deposits with a complex geological structure on the example of the Kuranakh ore field. Explosion technology. 2022, no. 137-94, pp. 45—65. [In Russ].

21. Rakishev B. R., Orynbay A. A., Auezova A. M., Kuttybaev A. E. Grain size composition of broken rocks under different conditions of blasting. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 83—94. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-83-94.

22. Ouchterlony F., Sanchidrián J. A., Moser P. Percentile fragment size predictions for blasted rock and the fragmentation—energy fan. Rock Mechanics and Rock Engineering. 2017, vol. 50, no. 4, pp. 751—779. DOI 10.1007/s00603-016-1094-x.

23. Zhang Z. X., Sanchidrián A. J., Ouchterlony F., Luukkanen S. Reduction of fragment size from mining to mineral processing: A review. Rock Mechanics and Rock Engineering. 2023, vol. 56, pp. 747—778. DOI: 10.1007/s00603-022-03068-3.

24. Rajak M. K., Pradhan G. K., Prince M. J. A. Assessment of blasting quality of an opencast mine. International Journal of Innovative Technology and Exploring Engineering. 2019, vol. 8, no. 12, pp. 4396—4397. DOI: 10.35940/ijitee.L3912.1081219.

25. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

26. Isheyskiy V. A., Martinyskin E. A., Vasilyev A. S., Smirnov S. A. Selection of data on drilling-and-blasting in creation of databases of machine learning algorithms. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 116—133. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_116.

27. Isheyskiy V. A., Vasilyev A. S. Processing, analysis and interpretation of blasthole drilling data—Peculiarities and problems. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 16—33. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_16.

28. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021, vol. 249, pp. 334—341. [In Russ]. DOI: 10.31897/PMI.2021.3.2.

29. Koteleva N. I., Khokhlov S. V., Frenkel I. A. Digitalization in open-pit mining. A new approach in monitoring and control of rock fragmentation. Applied Sciences. 2021, vol. 11, no. 22, article 10848, pp. 1—16. DOI: 10.3390/app112210848.

30. Mohamed F., Riadh B., Abderazzak S., Radouane N., Mohamed S., Ibsa T. Distribution analysis of rock fragments size based on the digital image processing and the Kuz-Ram model cas of Jebel Medjounes quarry. Aspects in Mining and Mineral Science. 2019, vol. 2, no. 4, pp. 325—329. DOI: 10.31031/AMMS.2019.02.000545.

31. Bamford T., Esmaeili K., Schoellig A. P. Continuous monitoring and improvement of the blasting process in open pit mines using unmanned aerial vehicle techniques. Remote Sensing. 2020, vol. 12, article 34. DOI:10.3390/rs12172801.

32. Rosin P., Rammler E. The laws governing the fineness of powdered coal. Journal of the Institute of Fuel. 1933, vol. 7, no. 6, pp. 29—36.

33. Maerz N. H., Palangio T. C., Franklin J. A. WipFrag image based granulometry system. Proceedings of the FRAGBLAST 5 Workshop on Measurement of Blast Fragmentation. Montreal, Quebec, Canada, 1996, pp. 91—99.

34. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Assessment of operational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020, vol. 241, pp. 10—21. [In Russ]. DOI: 10.31897/pmi.2020.1.10.

35. Velikanov V. S. Mining excavator working equipment load forecasting according to a fuzzy-logistic model. Journal of Mining Institute. 2020, vol. 241, pp. 29—36. [In Russ]. DOI: 10.31897/pmi.2020.1.29.

36. Zharikov S. N. Improved estimation of open pit excavator capacity. Journal of Mining Institute. 2018, vol. 229, pp. 56—61. [In Russ]. DOI: 10.25515/pmi.2018.1.56.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.