Applicability of hydrodynamic cavitation treatment of ash materials in sequestration and utilization of CO2

Utilization is a way of reclamation of toxic industrial waste such as fly ash and ash residue. Fossil fuel energy is going to remain the main source of the global energy supply in the coming years. The lack of the effective control strategy can aggravate the problem connected with ash content in the environment therefore. Capture, utilization and storage of carbon open opportunities for various-way utilization of ash–as a capture material, as a permanent storage medium of CO2 through mineralization, as well as a catalyst or a catalyst carrier for the processes of carbon dioxide utilization. This article discusses the efficiency of hydrodynamic cavitation treatment in optimization of capture and storage of greenhouse gas CO2. The test materials were ash powders of Kansk–Achinsk coal combustion and waste of ceramic production from these powders, treated in rotary hydrodynamic generator. The changes in the physicochemical properties of the powders were analyzed using optical microscopy, X-ray phase analysis, electron paramagnetic resonance (EPR) and nuclear gamma resonance (Mossbauer effect). As a result of the hydrodynamic treatment of the test samples, substantial reduction in size of ash particles, separation of manganese and iron phases, as well as ultra fine variation in population of various-valency iron in iron-bearing part of the samples of ceramic foams were observed. These effects can promote an increase in reactivity of the test samples in the technologies of sequestration and utilization of CO2. This inference agrees with the data from the available literature sources.

Keywords: cavitation, CO2 sequestration, hydrodynamic treatment, utilization of CO2, carbon dioxide, ash, carbonization, mineralization.
For citation:

Stebeleva O. P., Kashkina L. V., Bayukov O. A., Minakov A. V., Pikurova E. V. Applicability of hydrodynamic cavitation treatment of ash materials in sequestration and utilization of CO2. MIAB. Mining Inf. Anal. Bull. 2024;(2):151-167. [In Russ]. DOI: 10.25018/ 0236_1493_2024_2_0_151.

Acknowledgements:

The study was carried out under the state contract with the Siberian Federal University, Contract No. FSRZ-2020-0012. The optical analysis of the test samples was carried out under the state contract with the Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences, Project No. FWES-2021-0014, using equipment of the Shared Use Center at the Krasnoyarsk Science Center SB RAS.

Issue number: 2
Year: 2024
Page number: 151-167
ISBN: 0236-1493
UDK: 502.13
DOI: 10.25018/0236_1493_2024_2_0_151
Article receipt date: 17.05.2023
Date of review receipt: 20.09.2023
Date of the editorial board′s decision on the article′s publishing: 10.01.2024
About authors:

O.P. Stebeleva1, Cand. Sci. (Eng.), Assistant Professor, e-mail: opstebeleva@mail.ru, ORCID ID: 0000-0002-9559-1522,
L.V. Kashkina1, Cand. Sci. (Phys. Mathem.), Assistant Professor, e-mail: sfugeo@mail.ru,
O.A. Bayukov, Dr. Sci. (Phys. Mathem.), Leading Researcher, Federal Research Center «Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences», 660036, Krasnoyarsk, Russia, e-mail: helg@iph.krasn.ru,
A.V. Minakov1, Dr. Sci. (Phys. Mathem.), Assistant Professor, Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia, e-mail: tov-andrey@yandex.ru, ORCID ID: 0000-0003-1956-5506,
E.V. Pikurova1, Cand. Sci. (Chem.), Researcher, Institute of Chemistry and Chemical Technology of the Siberian Branch of the Russian Academy of Sciences, 660036, Krasnoyarsk, Russia; Master’s Degree Student, e-mail: vitaelen@gmail.com, ORCID ID: 0000-0001-7558-6358,
1 Siberian Federal University, 660074, Krasnoyarsk, Russia.

 

For contacts:

O.P. Stebeleva, e-mail: opstebeleva@mail.ru.

Bibliography:

1. Masson-Delmotte V., Zhai P., Pörtner H.-O., Roberts D., Skea J., Shukla P. R., Pirani A., MoufoumaOkia W., Péan C., Pidcock R., Connors S., Matthews J. B. R., Chen Y., Zhou X., Gomis M. I., Lonnoy E., Maycock T., Tignor M., Waterfield T. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. IPCC, 2018: Summary for Policymakers. Cambridge, UK and New York, NY, USA, pp. 3—24. DOI: 10.1017/9781009157940.001.

2. Alterary S. S., Marei N. H. Fly ash properties, characterization, and applications. A review. Journal of King Saud University — Science. 2021, vol. 33, no. 6, article 101536. DOI: 10.1016/j.jksus.2021.101536.

3. Nayak D. K., Abhilash P. P., Singh R., Kumar R., Kumar V. Fly ash for sustainable construction. A review of fly ash concrete and its beneficial use case studies. Cleaner Materials. 2022, vol. 6, article 100143. DOI: 10.1016/j.clema.2022.100143.

4. Ankur N., Singh N. Performance of cement mortars and concretes containing coal bottom ash. A comprehensive review. Renewable and Sustainable Energy Reviews. 2021, vol. 149, article 111361. DOI: 10.1016/j.rser.2021.111361.

5. Dindi A., Quang D. V., Vega L. F., Nashef E., Abu-Zahra M. R. M. Applications of fly ash for CO2 capture, utilization, and storage. Journal of CO2 Utilization. 2019, vol. 29, pp. 82—102. DOI: 10.1016/j. jcou.2018.11.011.

6. Li N., Mo L., Unluer C. Emerging CO2 utilization technologies for construction materials. A review. Journal of CO2 Utilization. 2022, vol. 65, article 102237. DOI: 10.1016/j.jcou.2022.102237.

7. Yan F., Jiang J., Liu N., Gao Y., Meng Y., Li K., Chen X. Green synthesis of mesoporous y-Al2O3 from coal fly ash with simultaneous on-site utilization of CO2. Journal of Hazardous Materials. 2018, vol. 359, pp. 535—543. DOI: 10.1016/j.jhazmat.2018.07.104.

8. Dong X., Jin B., Cao S., Meng F., Chen T., Ding Q., Tong C. Facile use of coal combustion fly ash (CCFA) as Ni-Re bimetallic catalyst support for high-performance CO2 methanation. Waste Management. 2020, vol. 107, pp. 244—251. DOI: 10.1016/j.wasman.2020.04.014.

9. Liu W., Su S., Xu K., Chen Q., Xu J., Sun Z., Wang Y., Hu S., Wang X., Xue Y., Xiang J. CO2 sequestration by direct gas—solid carbonation of fly ash with steam addition. Journal of Cleaner Production. 2018, vol. 178, pp. 98—107. DOI: 10.1016/j.jclepro.2017.12.281.

10. Bauer M., Gassen N., Stanjek H., Peiffer S. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO2 sequestration. Applied Geochemistry. 2011, vol. 26, no. 8, pp. 1502— 1512. DOI: 10.1016/j.apgeochem.2011.05.024.

11. Ho H.-J., Iizuka A., Shibata E. Utilization of low-calcium fly ash via direct aqueous carbonation with a low-energy input: Determination of carbonation reaction and evaluation of the potential for CO2 sequestration and utilization. Journal of Environmental Management. 2021, vol. 288, article 112411. DOI: 10.1016/j. jenvman.2021.112411.

12. Hosseini T., Selomulya C., Haque N., Zhang L. Indirect carbonation of victorian brown coal fly ash for CO2 sequestration: Multiple-cycle leaching-carbonation and magnesium leaching kinetic modeling. Energy & Fuels. 2014, vol. 28, no. 10, pp. 6481—6493. DOI: 10.1021/ef5014314.

13. Mustafa J., Mourad A. A.-H. I., Al-Marzouqi A. H., El-Naas M. H. Simultaneous treatment of reject brine and capture of carbon dioxide. A comprehensive review. Desalination. 2020, vol. 483, article 114386. DOI: 10.1016/j.desal.2020.114386.

14. Kossovich E. L., Andreeva Y. E., Gavrilova D. I., Epshtein S. A., Dobryakova N. N. Problems of carbon dioxide leakage from geological storage. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 46—54. [In Russ]. DOI: 10. 25018/0236_1493_2022_12_0_46.

15. Fan L., Mu Y., Feng J., Cheng F., Zhang M., Guo M. In-situ Fe/Ti doped amine-grafted silica aerogel from fly ash for efficient CO2 capture: Facile synthesis and super adsorption performance. Chemical Engineering Journal. 2023, vol. 452, article 138945. DOI: 10.1016/j.cej.2022.138945.

16. Li X., Wang Z., Mei Y., Feng R., Liu Z., Huang J., Dong L., Fang Y. Alumina-extracted residuederived silica foams with ultra-large pore volume for highly superior post-combustion CO2 capture. Fuel. 2022, vol. 316, article 123231. DOI: 10.1016/j.fuel.2022.123231.

17. Bartoňová L. Unburned carbon from coal combustion ash: An overview. Fuel Processing Technology. 2015, vol. 134, pp. 136—158. DOI: 10.1016/j.fuproc.2015.01.028.

18. Han L., Wang X., Wu B., Zhu S., Wang J., Zhang Y. In-situ synthesis of zeolite X in foam geopolymer as a CO2 adsorbent. Journal of Cleaner Production. 2022, vol. 372, article 133591. DOI: 10.1016/j. jclepro.2022.133591.

19. Zhang Y., Gao Y., Pfeiffe H., Louis B., Sun L., O’Hare D., Wang Q. Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture. Journal of Materials Chemistry A. 2019, vol. 7, no. 14, pp. 7962—8005. DOI: 10.1039/C8TA08932A.

20. Ji L., Yu H., Zhang R., French D., Grigore M., Yu B., Wang X., Yu J., Zhao S. Effects of fly ash properties on carbonation efficiency in CO2 mineralisation. Fuel Processing Technology. 2019, vol. 188, pp. 79—88. DOI: 10.1016/j.fuproc.2019.01.015.

21. Nawar A., Ali M., Waqas A., Javed A., Iqbal N., Khan R. Effect of different activation processes on CaO/Fly Ash Mixture for CO2 Capture. Energy & Fuels. 2019, vol. 34, no. 2, pp. 2035—2044. DOI: 10.1021/acs.energyfuels.9b03520.

22. Chen J., Shen Y., Chen Z., Fu C., Li M., Mao T. Accelerated carbonation of ball-milling modified MSWI fly ash: Migration and stabilization of heavy metals. Journal of Environmental Chemical Engineering. 2023, vol. 11, no. 2, article 109396. DOI: 10.1016/j.jece.2023.109396.

23. Pavlov V. F., Shabanov V. F. Use of self-propagating crystallization phenomenon in the production of glass ceramic materials. Steklo i Keramika. 2003, vol. 76, no. 12, pp. 11—13. [In Russ].

24. Stebeleva O. P., Kashkina L. V., Minakov A. V., Vshivkova O. A. Impact of hydrodynamic cavitation on the properties of coal-water fuel: An experimental study. ACS Omega. 2022, vol. 7, pp. 37369—37378. DOI: 10.1021/acsomega.2c03979.

25. Postnikov A. V. Collapse dynamics of hemispherical cavitation bubble in contact with a solid boundary. Izvestia RAN, Mekhanika Zhidkosti i Gaza. 2020, no. 4, pp. 24—34. [In Russ]. DOI: 10.31857/ S056852812004009X.

26. Stebeleva O. P., Minakov A. V. Application of cavitation in oil processing: An overview of mechanisms and results of treatment. ACS Omega. 2021, vol. 6, pp. 31411—31420. DOI: 10.1021/acsomega.1c05858.

27. El-Naas M. H., Mohammad A. F., Suleiman M. I., Al-Musharfy M., Al-Marzouqi A. H. A new process for the capture of CO2 and reduction of water salinity. Desalination. 2017, vol. 411, pp. 69—75. DOI: 10.1016/j.desal.2017.02.005.

28. Petrakovskaya É. A., Isakova V. G., Bayukov O. A., Velikanov D. A. Superparamagnetism of magnetite particles in C60 fullerite powder. Technical Physics. 2005, vol. 75, pp. 117—120. [In Russ].

29. Garcia S., Kaminska S., Mercedes Maroto-Valer M. Underground carbon dioxide storage in saline formations. Proceedings of the Institution of Civil Engineers — Waste and Resource Management. 2010, vol. 163, no. 2, pp. 77—88. DOI: 10.1680/warm.2010.163.2.77.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.