Study of the iron ores of the Ayat deposit of the oolite type

The paper presents the results of studies of the composition of the oolitic iron ore of the Ayat deposit. Experiments were carried out and the results of the study of the decomposition of brown ironstone in the oxidizing atmosphere are presented. Analysis of the chemical composition of the initial and burnt ore was carried out using an electron microscope (micro X-ray spectral analysis), and also by the chemical method. The study of the mineralogical composition of the initial and burnt ore was carried out on a diffractometer by X-ray diffraction analysis. The obtained data are necessary for the development of theoretical and technological bases of pyrometallurgical processing of oolitic iron ores with high phosphorus content.

Keywords: oolitic iron ore, phosphorus, Ayat deposit, oxidative firing, distribution of elements in ore, iron-containing phase.
For citation:

Suleimen B., Salikhov S. P., Roshchin V. Ye. Study of the iron ores of the Ayat deposit of the oolite type. MIAB. Mining Inf. Anal. Bull. 2022;(10-1):50—58. [In Russ]. DOI: 10.2 5018/0236_1493_2022_101_0_50.

Acknowledgements:

The reported study was funded by RFBR, project number 20—38—90111.

Issue number: 10
Year: 2022
Page number: 50-58
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_101_0_50
Article receipt date: 20.03.2022
Date of review receipt: 27.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Suleimen B.1, Cand. Sci. (Eng.), Researcher engineer of the Department of Pyrometallurgical and Foundry Technologies, e-mail: bakytsuleimen@mail.ru, ORCID ID: 0000-0001-9306-1045;
Salikhov S. P.1, Cand. Sci. (Eng.), Senior Researcher, Associate Professor of the Department of Pyrometallurgical and Foundry Technologies, e-mail: salikhovsp@susu.ru, ORCID ID: 0000-0002-8818-0450;
Roshchin V. E.1, Dr. Sci. (Eng.), Professor, Chief Researcher, of the Department of Pyrometallurgical and Foundry Technologies, e-mail: roshchinve@susu.ru, ORCID ID: 0000-0003-3648-8821.
1 South Ural State University, 454080, Chelyabinsk, Russia.

 

For contacts:

Suleimen B., e-mail: bakytsuleimen@mail.ru.

Bibliography:

1. Roshchin, V. E., Adilov, G. A., Povolotskii, A. D., et al. (2019). Combined Processing of Copper-Smelting Slags for the Manufacture of Valuable Products. Russian Metallurgy (Metally), 12, 1289−1296. DOI: 10.1134/S0036029519120176.

2. Roshchin, V. E., Adilov, G. A., Povolotskii, A. D., et al. (2020). Complex Processing of Copper Smelting Slags with Obtaining of Cast Iron Grinding Media and Proppants. KnE Materials Science, 6(1), 462–471. DOI: 10.18502/kms.v6i1.812.

3. Kosdauletov, N., Roshchin, V. (2020). Determining the Conditions for Selective Iron Recovery by Iron-Manganese Ore Reduction. Steel in Translation, 50, 870−876. DOI: 10.3103/S0967091220120050.

4. Kosdauletov, N. K., Roshchin, V. E. (2021). Solid-Phase Reduction and Separation of Iron and Phosphorus from Manganese Oxides in Ferromanganese Ore. Defect and Diffusion Forum, 410, 281−286. DOI: 10.4028/www.scientific.net/DDF.410.281.

5. Smirnov, K. I., Gamov, P. A., Roshchin, V. E. (2020). Propagation of Solid-Phase Iron Reduction in a Layer of Ilmenite Concentrate. Steel in Translation, 50, 146−150. DOI: 10.3103/S0967091220030092.

6. Kelamanov, B., Samuratov, Ye., Akuov, A, et al. (2021). Research possibility of involvement Kazakhstani nickel ore in the metallurgical treatment. Metalurgija, 60(3−4), 313−316.

7. Makhambetov, Y. N., Timirbayeva, N. R., Baisanov, S. O., et al. (2020). Research of physical and chemical characteristics of the new complex calcium-containing ferroalloy. CIS Iron and Steel Review, 19, 18−22. DOI: 10.17580/cisisr.2020.01.04.

8. Meijer, K., Zeilstra, C., Teerhuis, C., et al. (2013). Developments in alternative ironmaking. Transaction of the Indian Institute of Metals, 66, 475−481. DOI: 10.1007/ s12666−013−0309-z.

9. Hasanbeigi, A., Arens, M., Price, L. (2014). Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: a technical review. Renewable and Sustainable Energy Reviews, 33, 645−658. DOI: 10.1016/j.rser.2014.02.031.

10. Firth, A. R., Garden, J. F. (2008). Interactions between magnetite oxidation and flux calcination during iron ore pellet induration. Metallurgical and materials transactions, 39(4), 524−533. DOI: 10.1007/s11663−008−9162−6.

11. Han, H., Duan, D., Yuan, P., et al. (2015). Recovery of metallic iron from high phosphorus oolitic hematite by carbothermic reduction and magnetic separation. Ironmak Steelmak, 42(7), 542−547.

12. Cheng, C., Misra, V., Clough, J., et al. (1999). Dephosphorization of Western Australian iron ore by hydrometallurgical process. Minerals Engineering, 12(9), 1083−1092.

13. Tigunov, L. P., Anufrieva, S. I., Bronitskaya, E. S., et al. (2010). Modern technological solutions for processing of iron ores of the Bakcharsk deposit. Razvedka i Okhrana Nedr, 2, 37−43.

14. Babin, A. A. (1969). Bakcharskoye iron ore deposit (geology, regularities of distribution and genesis of iron ores) (author’s abstract of candidate’s dissertation). Tomsk Polytechnic Institute. Tomsk.

15. Lyutoev, V. P., Silaev, V. I., Lysiuk, A. Yu., et al. (2016). Kerch oolite iron ores and the possibilities of their technological modification. Bulletin of the Institute of Geology of the Komi Scientific Center of the Ural Branch of the Russian Academy of Sciences, 1, 18−29. DOI: 10.19110/2221−1381−2016−1-18−29.

16. Mirko, V., Kabanov, Yu., Naidenov, V. (2002). Current state of deposits of brown iron ore in Kazakhstan. Promyshlennost’ Kazakhstana, 1, 79−82.

17. Smirnov, L. A., Babenko, A. A. (2001). Introduction of Lisakovsky concentrate in production as one of the directions for expanding iron ore base of the Urals and Siberia. Materials of the International Congress “300 years of the Ural metallurgy”, 48−49.

18. Kaskataeva, K. B., et al. (2021). Characteristics of the ores of the Lisakovsk deposit for their complex processing. Proceedings of Tomsk Polytechnic University, 332(5), 7−16.

19. Ministry of Investment and Development of the Republic of Kazakhstan (Committee of Geology and Subsoil Use). (2022). Retrieved from: http://geology.mid.gov.kz/ru.

20. Salikhov, S., Suleimen, B., Roshchin, V. (2020). Selective reduction of iron and phosphorus from oolite ore. Izvestiya Vysshikh Uchebnykh Zavedenij. Ferrous metallurgy, 63(7), 560−567. DOI: 10.17073/0368−0797−2020−7-560−567.

21. Salikhov, S., Suleimen, B., Roshchin, V. (2020). Selective Reduction of Iron and Phosphorus from Oolitic Ore. Steel in Translation, 50(7), 460−466. DOI: 10.3103/ S0967091220070128.

22. Suleimen, B., Salikhov, S. (2021). Metallization of Oolitic Iron Ore after Oxidation Firing. Solid State Phenomena, 316, 390−395. DOI: 10.4028/www.scientific.net/SSP.316.390.

23. Mukhtar, A. A., Kataeva, G. L., Makashev, A. S., et al. (2013). Enrichment of brownlimestone ores of the Ayatskoye deposit. Ores and metals, 1, 71−73.

24. Vegman, E. F., Zherebin, B. N., Pokhvisnev, A. N., et al. (1978). Cast Iron Metallurgy. Moscow: Metallurgiya.

25. Karelin, V. G., Zainullin, L. A., Epishin, A. Yu., et al. (2015). Combined pyrohydrometallurgical technology of desphosphorization of brown ironstone of the Lisakovsky deposit. Black metallurgy, 2, 10−15.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.