Recovery of rare earths from uranium leach solutions

The studies aim to develop a technology for by-recovery of rare earth elements (REE) from solutions of in-situ uranium leaching. The tests were carried out with actual in-situ leach solutions after extraction of uranium from them. REE recovery used TOKEM’s strong-acid cation exchange resin (gel type), and its total dynamic exchange capacity relative to REE and main impurities was determined. Desorption of REE and impurities was studied as function of concentration of nitric acid. The main part of metal impurities is desorbed using nitric acid with concentration of 22.5 g/l, and further desorption of REE and residual impurities is possible at nitric acid concentration of 180 g/l. REE settling from the nitric acid strippant used ethane diacid. With pH in the range of 2.2–2.7, ethane diacid allows quantitative settling of REE, with calcium settled with pH in the range of 2.2–2.3 and iron and aluminum settled with pH in the range of 2.5–2.7. Removal of calcium oxide from rough concentrates of REE oxides used solutions of chloride and ammonium nitrate. It is found that the use of 20 percent NH4NO3 or NH4Cl solutions can curtail drastically the content of calcium oxide and increase the content of REE oxides in concentrates. The conceptual flow chart proposed for desorption of REE from uranium leach solution with production of 30 percent concentrates of REE oxides is presented.

Keywords: rare earth metals, in-situ leaching solutions, sorption, desorption, nitric acid, settling, ethane diacid, calcium, iron, aluminum, process flow chart.
For citation:

Petukhov O. F., Ruziev B. T., Sharafutdinov U. Z. Recovery of rare earths from uranium leach solutions. MIAB. Mining Inf. Anal. Bull. 2021;(1):58-67. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-58-67.

Acknowledgements:
Issue number: 1
Year: 2021
Page number: 58-67
ISBN: 0236-1493
UDK: 554.732.2
DOI: 10.25018/0236-1493-2021-1-0-58-67
Article receipt date: 10.03.2020
Date of review receipt: 04.05.2020
Date of the editorial board′s decision on the article′s publishing: 10.12.2020
About authors:

O.F. Petukhov1, Dr. Sci. (Eng.), Deputy Head of Central Scientific Research Laboratory on Uranium and Rare Earth Elements, e-mail: o.petuhov@ngmk.uz.
B.T. Ruziev1, Head of Treasury for Uranium, Central Scientific Research Laboratory,
U.Z. Sharafutdinov1, Cand. Sci. (Eng.), Assistant Professor, Head of the Innovation Center,
1 Navoi Mining and Metallurgical Combinat, Navoi, Uzbekistan.

 

For contacts:

O.F. Petukhov, e-mail: o.petuhov@ngmk.uz.

Bibliography:

1. Sanakulov K. S., Petukhov O. F., Sharafutdinov U. Z. Rare metals — innovative resource NMMK. Mountain Bulletin of Uzbekistan. 2018, no 4, pp. 57—61. [In Russ].

2. Villani F. M. Redkozemel'nye elementy. Tekhnologiya i primenenie [Rare earth elements. Technology and application], Moscow, Metallurgiya, 1985.

3. Aymbetova I. O., Ustimov A. M., Bakhov Zh. K., Seysenbaev A. E., Tulekbaeva A. K. What to extract rare earth metals from technogenic solutions of uranium industry. The rare earth. 2014, no 3, pp. 126—131. [In Russ].

4. Plaksin I. N., Tetaru S. A. Gidrometallurgiya s primeneniem ionitov [Hydrometallurgy with using ion – change resins], Moscow, Metallurgiya, 1964, pp. 210—219.

5. Shakhno I. V., Shevtsova Z. N., Fedorov P. I., Korovin S. S. Khimiya i tekhnologiya redkikh i rasseyannykh elementov. T. 2 [Chemistry and technology rare and rare earth elements. Vol. 2], Moscow, Vysshaya shkola, 1964, pp. 117—119.

6. Ryabchikov D. I., Ryabukhin V. A. Analiticheskaya khimiya RZE i ittriya [Analytical chemistry rare earth elements and yttrium], Moscow, Nauka, 1966, pp. 110—114.

7. Sanakulov K. S., Petukhov O. F., Zolotarev Yu. P., Karimov A. K., Ruziev B. T., Saparov A. B. Patent IAP 05479, 12.06.2015.

8. Gedgagov A. I., Tarasov А.v., Giganov V. G. Lunkova М. А. Development innovative sorption and extract technologies of getting rare earth elements. Tsvetnye Metally. 2017, no 8, pp. 50—55. [In Russ].

9. Smirnov D. I., Molchanov Т. V., Vodolazov L. I., Peganov V.A. Sorption extraction of REE, yttrium and aluminum from red slurries. Tsvetnye Metally. 2002, no 8, pp. 64—69. [In Russ].

10. Stepanov S. I., Chekmarev A. M. Razdelenie redkozemel'nykh elementov [Separation of rare earth elements], Moscow, RKHTU im. Mendeleeva, 2016, pp. 29.

11. Polyakov E. G., Nechaev A. V., Smirnov A. V. Metallurgiya redkozemel'nykh elementov [Metallurgy rare earth elements], Moscow, Metallurgizdat, 2018, pp. 129.

12. Arenas L. F., Ponce de Leon C., Walsh F. C. Electrochemical redox processes involving soluble cerium spies. Electrochimica Acta. 2016. Vol. 205. Pp. 226—247.

13. Larsson K., Binnemans K. Separation of rare earth by split — anion extraction. Hydrometallugy. 2015. Vol. 156. Pp. 206—214.

14. Krishnamurthy N., Gupta C. K. Extractive metallurgy of rare earths, 2-nd ed. Boca Raton, London, New York, Washington, D.C.: CRC Press, 2015. 869 p.

15. Chernyak A. S. Khimicheskoe obogashchenie rud [Chemical benefication of ores], Moscow, Nedra, 1987, 163 p.

16. Wang L., Huang X., Yu Y., Zhao L., Wang C., Feng Z., Cui D., Long Z. Towards cleaner production of rare earth elements from bastnaesite in China. Journal of Cleaner Production. 2017. Vol. 165. Pp. 231—242.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.