Estimating geodynamic hazard in mining regions

The concept of the critical stress state of the Earth’s crust is used to address the issue of the geodynamic hazard estimation in a mining region. In terms of Kuzbass and using the data on depths of hypocenters of induced seismic events, the thickness of the critical stress layer at the crustal top, which is one of the most significant factors to govern the geodynamic hazard, is evaluated. The depths of hypocenters of induced seismic events are determined at sufficient reliability, and these data allow tracing their change and comparing the resultant estimates with the block structure of Kuzbass, found in the 1980s by the method of geodynamic zoning. The crustal faults of rank II separate different thickness blocks in the crustal layer supposed to be in the critical stress state and having the thickness ranging from 2.1 km to 4–5 km according to the present studies. The data on the depths of hypocenters of induced earthquakes enable zoning of the Kuzbass area by the geodynamic hazard criterion which increases north–southward. The further research is to explore response of rock mass to the large-scale induced impact, including reactivation of intra-block tectonic faults and contribution of this process to subsurface degassing.

Keywords: induced seismicity, rock burst, hypocenter depth, critical stress state, geodynamic hazard level, geodynamic zone, mine gas migration, Kuzbass.
For citation:

Shermatova S. S., Byabasuren Z., Shevchuk S. V., Romero M., Doskalov A. I. Estimating geodynamic hazard in mining regions. MIAB. Mining Inf. Anal. Bull. 2022;(12):175184. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_175.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 22-27-00728.

Issue number: 12
Year: 2022
Page number: 175-184
ISBN: 0236-1493
UDK: 622.831.32; 550.34; 504.12
DOI: 10.25018/0236_1493_2022_12_0_175
Article receipt date: 05.07.2022
Date of review receipt: 03.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

S.S. Shermatova1, Graduate Student, e-mail: s_shermatova@inbox.ru,
Z. Byambasuren1, Graduate Student, e-mail: zundui.rgi@gmail.com,
S.V. Shevchuk1, Scientific Project Expert, e-mail: shevchuk.stepan@yandex.ru,
M. Romero2, Cand. Sci. (Eng.), Assistant Professor, e-mail: moises555@mail.ru,
A.I. Doskalov2, Graduate Student, e-mail: akbar_9595@mail.ru,
1 Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia,
2 Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, 117198, Moscow, Russia.

 

For contacts:

S.S. Shermatova, e-mail: s_shermatova@inbox.ru.

Bibliography:

1. Yakovlev D. V., Lazarevich T. I., Tsirel' S. V. Natural and induced seismic activity in Kuzbass. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2013, no. 6, pp. 20—34. [In Russ].

2. Foulger G. R., Wilson M. P., Gluyas J. G., Julian B. R., Davies R. J. Global review of human-induced earthquakes. Earth-Science Reviews. 2018, vol. 178, pp. 438—514.

3. Batugin A., Kobylkin A., Musina V., Krasnoshtanov D. Validation of the geometrical model and boundary conditions for modeling the process of air intake into the body of a coal waste dump taking into account area geodynamics. Proceedings of the 18th International Multidisciplinary Scientific GeoConference (SGEM-2018). 2018, vol. 18, no. 1.3, pp. 1111—1118.

4. Krause E., Pokryszka Z. Investigations on methane emission from flooded workings of closed coal mines. Journal of Sustainable Mining. 2013, vol. 12, no. 2, pp. 40—45. DOI: 10.7424/jsm130206.

5. Qiao Jianyong, Wang Zhiqiang, Zhao Jingli The evolution of thick coal seams mining methods in China. MIAB. Mining Inf. Anal. Bull. 2020, no. 8, pp. 105—117. [In Russ]. DOI: 10.25018/0236-1493-2020-8-0-105-117.

6. Eremenko A. A., Mashukov I. V., Eremenko V. A. Geodynamic and seismic events under rockburst-hazardous block caving in Gornaya Shoria. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no. 1, pp. 70—76. [In Russ].

7. Fedotova Y., Kozyrev A., Akkuratov M., Zhukova S. Rock mass watering impact on induced seismicity in junction zone between underground mine and open-pit mine. 32nd European Seismological Commission General Assembly (ESC 2010). Abstract book. 2010, 157 p.

8. Malashkina V. A. Trends toward reduction of mine methane emission in atmosphere. MIAB. Mining Inf. Anal. Bull. 2021, no. 10-1, pp. 137—145. [In Russ]. DOI: 10.25018/0236_1 493_2021_101_0_137.

9. Kulikova A. A., Ovchinnikova T. I. On the issue of reducing geoecological risks at mining enterprises. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 251—262. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-251-262.

10. Balovtsev S. V., Skopintseva O. V., Kolikov K. S. Aerological risk management in designing, operation, closure and temporary shutdown of coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 85—94. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0-85-94.

11. Kobylkin S. S., Kharisov A. R. Design features of coal mines ventilation using a roomand-pillar development system. Journal of Mining Institute. 2020, vol. 245, no. 5, pp. 531—538. [In Russ]. DOI: 10.31897/PMI.2020.5.4.

12. Kulikova E. Y., Ivannikov A. L. The terms of soils removal from the defects of the underground structures' lining. Journal of Physics: Conference Series. 2019, vol. 1425, no. 1, article 012062. DOI: 10.1088/1742-6596/1425/1/012062.

13. Myaskov A. V., Popov E. M., Popov S. M. Prospects for the use of mines in east donbass as underground gas storage facilities in the integral gas-supply system of Southern Russia. Gornyi Zhurnal. 2018, no. 3, pp. 33—36. [In Russ]. DOI: 10.17580/gzh.2018.03.05.

14. Kutepov Yu. I., Kutepova N. A., Mukhina A. S., Moseykin V. V. Geological, geotechnical and geoecological problems of reclamation of land disturbed by dumping in open pit coal mining in Kuzbass. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 5—24. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_5.

15. Tatarinov V. N., Morozov V. N., Kamnev E. N., Manevich, A. I. Geodynamic aspects of high-level radioactive waste disposal. A case-study of nizhnekansky massif. Gornyi Zhurnal. 2021, no. 3, pp. 108—112. [In Russ]. DOI: 10.17580/gzh.2021.03.05.

16. Mokhov A. V. Mine water drainage from flooded coal mines. Doklady Akademii nauk. 2011, vol. 438, no. 2, pp. 494—496. [In Russ]. DOI: 10.1134/S1028334X11060092.

17. Rong H., Yu S., Zhang H., Liang B., Han J., Lan T., Yang Z. Determination of critical depth in rockburst mine based on the energy of coal-rock dynamic system. Meitan Xuebao. Journal of the China Coal Society. 2021, vol. 46, no. 4, pp. 1263—1270. DOI: 10.13225/j.cnki.jccs.2020.0118.

18. Zhou J., Li X., Mitri H. S. Classification of rockburst in underground projects: Comparison of ten supervised learning methods. Journal of Computing in Civil Engineering. 2016, vol. 30, no. 5. DOI: 10.1061/(ASCE)CP.1943-5487.0000553.

19. Rasskazov I. Yu., Fedotova Yu. V., Sydlyar A. V., Potapchuk M. I. Analysis of induced seismic events in rockburst-hazardous Nikolaevsk deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 46—56. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-46-56.

20. Petukhov I. M., Batugina I. M. Geodinamika nedr [Geodynamics of subsoil], Moscow, Nedra kommunikeyshenz, 1999, 288 p.

21. Batugin A. S. A proposed classification of the Earth's crustal areas by the level of geodynamic threat. Geodesy and Geodynamics. 2021, vol. 12, no. 1, pp. 21—30. DOI: 10.1016/j. geog.2020.10.002.

22. Adushkin V. V. Тechnogenic tectonic seismicity in Kuzbass. Russian Geology and Geophysics. 2018, vol. 59, no. 5, pp. 709—724. [In Russ]. DOI: 10.15372/GiG20180510.

23. Emanov A. F., Emanov A. A., Fateyev A. V. Bachatskoe technogenic earthquake 18 June 2013 with ML = 6.1, I0 = 7 (Kuzbass). Russian Seismological Journal. 2020, vol. 2, no. 1, pp. 48—61. [In Russ]. DOI: 10.35540/2686-7907.2020.1.05.

24. Batugin S. A., Shamanskaya A. T. Investigations of the stressed state of a rock mass by the stress-relieving method under conditions of the Tashtagol iron-ore deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 1965, no. 2, pp. 28—33. [In Russ].

25. Fateev A. V., Emanov A. F., Podkorytova V. G., Leskova E. V. Zemletryaseniya Rossii v 2010 godu [Earthquakes in Russia in 2010], Obninsk, FITS EGS RAN, 2012, 208 p.

26. Batugina I. M., Petukhov I. M. Geodinamicheskoe rayonirovanie mestorozhdeniy pri stroitel'stve i ekspluatatsii rudnikov [Geodynamic zoning of deposits during construction and operation of mines], Moscow, Nedra, 1988, 166 p.

27. Yuzvitsky A.Z. Tectonics and deep structure of Kuzbass. Sovetskaya geologiya. 1982, no. 12, pp. 6—10. [In Russ].

28. Sharov G. N., Chernykh A. E. Osobennosti glubinnogo stroeniya Kuznetskoy vpadiny v svyazi s neftegazoi rudonosnost'yu. Aktual'nye problemy rudoobrazovaniya i metallogenii [Features of the deep structure of the Kuznetsk Basin in relation to oil, gas, and ore content. Actual problems of ore formation and metallogeny], Novosibirsk, Geo, 2006, pp. 243—245.

29. Ekimov A. I., Tsirel S. V. Features of manifestations of tectonic and seismic activity in Kuzbass. Journal of Mining Institute. 2010, vol. 188, pp. 79—81. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.