Condition detection of pipeline holding in mine shafts by the corrosive wear criterion

The pipeline holding structure in application in potash mine shafts is briefly described. The current strength and stability design parameters for the mine shaft metalwork are specified. The current regulations and procedures for the pipeline holding system design in mine shafts are discussed. It is required to take into account the increased corrosive wear as a key factor of influence on the actual operating condition of continuous-duty metalworks in the aggressive environment of potash mine shafts. The maximum permissible corrosive wear notion is introduced as a criterion of operating condition of pipeline holding in mine shafts. The algorithm of calculating the maximum permissible corrosive wear of pipeline support beams in mine shafts is proposed. The sample calculated results of the maximum permissible corrosive wear of pipeline holding in long-duty shafts in potash mines are presented. The applied relevance of the obtained maximum permissible corrosive wear values is proposed for both operating and new-design structures of pipeline holding in potash mine shafts. The maximum permissible corrosive wear algorithm is given for long-duty holding of pipelines.

Keywords: mine shaft, shaft lining, support beams, pipelines, checking calculation, corrosive wear, instrumental measurements, metalwork design.
For citation:

Pestrikova V. S., Tarasov V. V., Ivanov O. V. Condition detection of pipeline holding in mine shafts by the corrosive wear criterion. MIAB. Mining Inf. Anal. Bull. 2022;(10):7887. [In Russ]. DOI: 10.25018/0236_1493_2022_10_0_78.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 78-87
ISBN: 0236-1493
UDK: 622.28
DOI: 10.25018/0236_1493_2022_10_0_78
Article receipt date: 01.03.2022
Date of review receipt: 10.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

V.S. Pestrikova1, Cand. Sci. (Eng.), Leading Researcher, e-mail: Varvara.Pestrikova@uralkali.com, ORCID ID: 0000-0002-6599-0493,
V.V. Tarasov1, Cand. Sci. (Eng.), Head of Laboratory, e-mail: Vladislav.Tarasov@uralkali.com, ORCID ID: 0000-0002-3431-7028,
O.V. Ivanov1, Leading Engineer, e-mail: Oleg.Ivanov2@uralkali.com, ORCID ID: 0000-0001-6566-4375,
1 Joint Stock Company VNII Galurgii, 614002, Perm, Russia.

 

For contacts:

V.S. Pestrikova, e-mail: Varvara.Pestrikova@uralkali.com.

Bibliography:

1. Xihui Jianga, Changdong Liab, Jia-Qing Zhouab, Zihan Zhanga, WenminYaoc, Wenqiang Chena, Hong-BinLiu Salt-induced structure damage and permeability enhancement of Three Gorges Reservoir sandstone under wetting-drying cycles. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 105, pp. 160—171.

2. Komljenovic Dragana, Loiselle Georgesb, Kumral Mustafac Organization: a new focus on mine safety improvement in a complex operational and business environment. International Journal of Mining Science and Technology. 2017, vol. 27, no. 4, pp. 617—625.

3. Brücker Carolina, Preuße Axel The future of underground spatial planning and the resulting potential risks from the point of view of mining subsidence engineering. International Journal of Mining Science and Technology. 2017, vol. 30, no. 1, pp. 93—98.

4. Tarasov V. V., Pestrikova V. S., Ivanov О. V., Chistyakov А. N. Influence of microclimatic air parameters on the elements of support and reinforcement in the shafts of the potash mine. Izvestiya Tula State University. Sciences of Earth. 2020, no. 2, pp. 174—183. [In Russ].

5. Tarasov V. V., Pestrikova V.S, Rusakov M. I. Zhiznennye tsikly kompleksa sooruzheniy shakhtnykh stvolov Verkhnekamskogo mestorozhdeniya [Life cycles of the Verkhnekamskoye deposit shaft facilities], Novosibirsk, Nauka, 2021, 232 p.

6. Pestrikova V. S., Tarasov V. V. Calculating maximum permissible corrosive wear of button beams in operating shafts in potassium mines. MIAB. Mining Inf. Anal. Bull. 2017, no. 10, pp. 157—160. [In Russ]. DOI: 10.25018/02361493-2017-10-0-157-160.

7. Laptev B. V. Accidents at Verkhnekamskoe potash-magnesium salt deposit. Occupational Safety in Industry. 2009, no. 8, pp. 28—31. [In Russ].

8. Pleshko M. S., Sil'chenko Yu. A., Pankratenko A. N., Nasonov A. A. Improvement of the analysis and calculation methods of mine shaft design. MIAB. Mining Inf. Anal. Bull. 2019, no. 12, pp. 55—66. [In Russ]. DOI: 10.25018/02361493-2019-12-0-55-66.

9. Waltona G., Kima E., Sinhaa S., Sturgisb G., Berberickb D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 105, pp. 160—171.

10. Yang Yua, Ka-zhong, Denga Yi, Luob Shen-en Chenc, Hui-fu Zhuanga An improved method for long-term stability evaluation of strip mining and pillar design. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 107, pp. 25—30.

11. Fedotov S. D., Ulybin А. V., Shabrov N. N. On the method of determining the corrosion wear of steel structures. Magazine of civil engineering. 2013, no. 1, pp. 12—20. [In Russ]. DOI: 10.5862/MCE.36.2.

12. Myaskov А. V. Current environmental and economic problems of subsoil use. MIAB. Mining Inf. Anal. Bull. 2014, no. 2, pp. 157—160. [In Russ].

13. Gadolina I. V., Pobegailo P. А., Kritskiy D.Yu., Lyubisha P. Specifying the engineering methodology for estimating the wear rate of excavator working body elements. Nadezhnost'. 2019, vol. 19, no. 1(68), pp. 18—23. [In Russ]. DOI: 10.21683/1729-2646-2019-19-118-23.

14. Goncharov A. B., Tulinov A. B., Perepechai B. A. Strategy of maintenance and repair of mining equipment in order to ensure its reliability. MIAB. Mining Inf. Anal. Bull. 2016, no. 11, pp. 70—79. [In Russ].

15. Tyurin S. I. Improving the efficiency of mining equipment operation through the introduction of new repair. MIAB. Mining Inf. Anal. Bull. 2016, no. 5, pp. 136—148. [In Russ].

16. Kulikova E. Yu., Konyukhov D. S. Accident risk monitoring in underground space development. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 97—103. [In Russ]. DOI: 10.25018/ 0236_1493_2022_1_0_97.

17. Sukhanov D. А. Risk searching. Some aspects of risk assessment of production facilities in the system of industrial safety and labor protection management. Bezopasnost' i okhrana truda. 2016, no. 1, pp. 17—23. [In Russ].

18. Samigullin G. H., Lyadova A. A. Methodology for assessing the degree of danger of crack-like defects in metal structure. MIAB. Mining Inf. Anal. Bull. 2016, no. 2, pp. 99—106. [In Russ].

19. Bolotin V. V. Prognozirovanie resursa mashin i konstruktsiy [Forecasting the resource of machines and structures], Moscow, Mashinostroenie, 1984, 312 p.

20. Belozerov V. V., Kuzeev I. R., Naumkin E. A. Evaluation of the critical stress intensity coefficient using compact samples. Problemy stroitel'nogo kompleksa Rossii. Materialy X mezhdunarodnoy nauchno-tekhnicheskoy konferentsii pri X Mezhdunarodnoy spetsializirovannoy vystavke «Stroitel'stvo. Kommunal'noe khozyaystvo-2006» [Problems of the construction complex of Russia. Materials of the X International Scientific and Technical Conference at the X International Specialized Exhibition «Construction. Communal services-2006»], Ufa, 2006, pp. 165—166. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.