To the question of ventilation of underground mine workings during operation of diesel-hydraulic locomotives

The issue of organizing mechanized delivery of people and loads to underground workings is one of the key issues in mining operations. In most cases, diesel-hydraulic locomotives (DHL) are used for this purpose. The duration of downtime and output capacity of the enterprise depends on the distance from their route to the face. To ensure the safe operation of vehicles with a diesel engine in Russia, there are a number of regulatory documents (industrial safety rules, instructions, guidelines, GOSTs), which prescribe the need to control nitrogen and carbon oxides emitted with exhaust gases in the mine atmosphere, and to supply air in volume, sufficient to dilute the actual concentrations of these substances to acceptable values. In addition, RD 05—312—99 has not been canceled to date, which contains a requirement to ensure an air flow of 5 m3/min. for one hp used diesel engines. The implementation of this requirement is associated with certain difficulties and costs, in some cases it is impractical or impossible. In order to assess the validity of these requirements for the ventilation of mine workings in relation to the operation of modern diesel-hydraulic transport, an analysis of approaches to the regulation and normalization of mine atmosphere parameters used in domestic and foreign practice was performed. The volumes of DHL, their workload and traffic routes in the mines of JSC «SUEK-Kuzbass» are presented. The workings in which diesel locomotives are not currently operated due to the air consumption factor are analyzed. Ways of solving the problem are proposed.

Keywords: mines, mine atmosphere, diesel-hydraulic locomotives, exhaust gases, carbon monoxide, nitrogen oxides, maximum allowable concentration, air consumption.
For citation:

Malykh I. B., Kornev A. V., Korshunov G. I., Seregin A. S. To the question of ventilation of underground mine workings during operation of diesel-hydraulic locomotives. MIAB. Mining Inf. Anal. Bull. 2022;(6—1):140—156. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_140.

Issue number: 6
Year: 2022
Page number: 140-156
ISBN: 0236-1493
UDK: 622.6-843.6:622.41:622.44
DOI: 10.25018/0236_1493_2022_61_0_140
Article receipt date: 14.01.2022
Date of review receipt: 30.05.2022
Date of the editorial board′s decision on the article′s publishing: 10.05.2022
About authors:

Malykh I. B., Head of Strategy and Prospective Planning Department, JSC «SUEKKuzbass», 652507, Leninsk-Kuzneckij, Vasil’eva, 1, Russia, e-mail:;
Kornev A. V., Cand. Sci. (Eng.), Head of the Laboratory, Associate Professor at the Department of Industrial Safety,, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line, 2, Russia, e-mail: Kornev_AV@;
Korshunov G. I., Dr. Sci. (Eng.), Professor, Professor at the Department of Industrial Safety,, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line, 2, Russia, e-mail:;
Seregin A. S., Cand. Sci. (Eng.), Associate Professor at the Department of Industrial Safety,, Saint Petersburg Mining University, 199106, St. Petersburg, 21st Line, 2, Russia, e-mail:


For contacts:

Kornev A. V., e-mail:


1. Gornostayev V., Kubrin S. Organization of People and Materials Delivery by Suspended Diesel-Hydraulic Transport in the Mines of JSC «SUEK-Kuzbass». E3S Web of Conferences. 2018. vol. 41, 01017, pp. 1—4. DOI: 10.1051/e3sconf/20184101017.

2. Romanchenko S. B., Cieślik P., Velichkova B.., Kosterenko V. N. Modular complex for ensuring emergency-rescue works in mine and mines. Bulletin of the Scientific Center for Work Safety in the Coal Industry. 2019, no. 1. pp. 70—81. [In Russ].

3. Chebotarjov A. G. Modern working conditions at mining enterprises and ways to normalize them. Russian Mining Industry. 2012. no. 2 (102). pp. 84—88. [In Russ].

4. Chang P., Xu G. Review of Diesel Particulate Matter Control Methods in Underground Mines. Proceedings of the 11th International Mine Ventilation Congress. Springer, Singapore, 2019. pp. 461—470. DOI: 10.1007/978-981-13-1420—9_39.

5. Lutz E. A., Reed R. J., Lee V. S. T., Jefferey L. Burgess Comparison of personal diesel and biodiesel exhaust exposures in an underground mine. Journal of Occupational and Environmental Hygiene. 2017, vol. 14 (7), pp. 102—109. DOI: 10.1080/15459624.2017.1285488.

6. Korshunov G. I., Eremeeva A. M., Drebenstedt C. Justification of the use of a vegetal additive to diesel fuel as a method of protecting underground personnel of coal mines from the impact of harmful emissions of diesel-hydraulic locomotives. Journal of Mining Institute, 2021. vol. 247 (1), pp. 39—47. DOI: 10.31897/PMI.2021.1.5. [In Russ].

7. Korshunov G. I., Eremeeva A. M., Seregin A. S. Justification of reduction in air requirement in ventilation of coal roadways with running diesel engines. MIAB. Mining Inf. Anal. Bull. 2022;(3):47—59. DOI: 10.25018/0236_1493_2022_3_0_47. [In Russ].

8. Diesel Emissions Management in Underground Coal Mines. Best Practices and Recommendations. 2019. Available at: data/assets/pdf_ file/0009/1438524/diesel-emissions-mgt-underground-coal-mines.pdf.

9. Burtscher H. Physical characterization of particulate emissions from diesel engines: A review. Aerosol Science. 2005, vol. 36, pp. 896—932.

10. Saarikoski S., Teinilä K., Timonen H., Aurela M., Laaksovirta T., Reyes F., Vasques Y., Oyola P., Artaxo P., Pennanen S., Junttila S., Linnainmaa M., Salonen R. O., Hillamo R. Particulate matter characteristics, dynamics and sources in an underground mine. Aerosol Science and Technology. 2018. vol. 52 (1), pp. 114—122. DOI: 10.1080/02786826.2017.1384788.

11. Peters S., de Klerk N., Reid A., Fritschi L., Musk A. B., Vermeulen R. Quantitative levels of diesel exhaust exposure and the health impact in the contemporary Australian mining industry. Occupational and Environmental Medicine. 2017. vol. 74 (4), pp. 282—289. DOI:10.1136/oemed-2016—103808.

12. Hall-Roberts V. J., Hayhurst A. N., Knight D. E., Taylor S. G. The Origin of Soot in Flames: is the Nucleus an Ion. Combustion and Flame. 2000, vol. 120, pp. 578—584.

13. Maricq M. M. Chemical characterization of particulate emissions from diesel engines: A review. Journal of Aerosol Science. 2007, vol. 38, pp. 1079—1118. DOI: 10.1016/j. jaerosci.2007.08.001.

14. Gonen A. Ventilation Requirements for Today’s Mechanized Underground Metal Mines. International Journal of Advanced Research in Engineering. 2018, vol. 4, no. 1, pp. 7—10, DOI: 10.24178/ijare.2018.4.1.07.

15. Code of Federal Regulations. Limit on Exposure to Diesel Particulate Matter. Available at:

16. Rudakov M. L., Kolvakh K. A., Derkach I.V. Assessment of environmental and occupational safety in mining industry during underground coal mining. Journal of Environmental Management and Tourism, 2020, vol. 11, pp. 579-588 DOI: 10.14505/jemt. v11.3(43).10.

17. Eremeeva A. M., Kondrasheva N. K., Nelkenbaum K. S. Studying the possibility of improving the properties of environmentally friendly diesel fuels. Scientific and Practical Studies of Raw Material Issues. 2020, pp. 108—114. DOI: 10.1201/9781003017226—16.

18. Chemezov E. N. Industrial safety principles in coal mining. Journal of Mining Institute. 2019, vol. 240, pp. 649—653. DOI: 10.31897/pmi.2019.6.649. [In Russ].

19. Grishin E. L., Zaitsev A. V., Kuzminykh E. G. Ensuring Safe Workplace Conditions when Working Equipment with Internal Combustion Engines by Ventilation in Underground Mines. Perm Journal of Petroleum and Mining Engineering. 2020, vol. 20, no. 3, pp. 280—290. [In Russ]. DOI: 10.15593/2712—8008/2020.3.8. [In Russ].

20. Sidorenko A. A., Dmitriev P. N., Sirenko Y.G. Predicting Methane Emissions from Multiple Gas-Bearing Coal Seams to Longwall Goafs at Russian Mines, ARPN Journal of Engineering and Applied Sciences. 2021, vol. 16, no. 8, pp. 851-857. Available at: http://

21. Balovtsev S. V. Comparative assessment of aerological risks at operating coal mines. MIAB. Mining Inf. Anal. Bull. 2021;(2–1):5—17. DOI: 10.25018/0236-1493-2021-21—05—17. [In Russ].

22. Gendler S. G., Kopachev V. F., Kovshov S. V. Monitoring of compressed air losses in branched air flow networks of mining enterprises. Journal of Mining Institute. 2022, vol. 253, pp. 3-11. DOI: 10.31897/PMI.2022.8.

23. Smirnyakov V. V., Smirnyakova V. V., Pekarchuk D. S., Orlov F. A. Analysis of methane and dust explosions in modern coal mines in Russia. International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 02, pp. 1917—1929.

24. Vinogradov E. A., Nikiforov A. V., Kochneva A. A. Computational fluid dynamics study of ventilation flow paths on longwall panel, International Journal of Civil Engineering and Technology. 2019, vol. 10, iss. 02, pp. 1140—1147.

25. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. MIAB. Mining Inf. Anal. Bull. 2021;(1):78—89. DOI: 10.25018/02361493-2021-1-0—78—89. [In Russ].

26. Smirnyakov V.V., Rodionov V.A., Smirnyakova V.V., Orlov F.A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71-81. DOI: 10.31897/PMI.2022.12.

27. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021, vol. 250, pp. 553-561. DOI: 10.31897/PMI.2021.4.8.

28. Sidorenko A. A., Dmitriyev P. N., Ivanov V. V. A study of gas drainage methods efficiency in Kotinskaya mine in Russia. ARPN Journal of Engineering and Applied Sciences. 2020, vol. 15, no. 4, pp. 530-535. Available at: research_papers/rp_2020/jeas_0220_8125.pdf.

29. Kobylkin A. S. Analysis of distribution of harmful gases in mine roadways using computer modeling. MIAB. Mining Inf. Anal. Bull. 2014;(10):202—207. [In Russ].

30. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining. MIAB. Mining Inf. Anal. Bull. 2021;(2):99—107. DOI: 10.25018/0236—1493—20212—0-99—107. [In Russ].

31. Halim A. Ventilation requirements for diesel equipment in underground mines Are we using the correct values? Proceedings of 16th North American Mine Ventilation Symposium, USA. 2017, pp. 1—7.

32. Neol de N. Air Pollution control engineering. McGraw Hill, New York: Technology & Engineering. 2000. 586 p.

33. US National Research Council. Assessment of Exposure-Response Functions for Rocket-Emission Toxicants. Washington, DC: National Academy Press. 1998. 228 p. DOI: 10.17226/6205.

34. American Conference of Governmental Industrial Hygienist (ACGIH). Threshold Limit Values. Available at:

35. McGinn S. Controlling diesel emissions in underground mining within an evolving regulatory structure in Canada and the United States of America. Proceedings of Queensland Mining Industry Health and Safety Conference, Australia. 2007. Available at: https://www.

36. Babu K. V. R., Dias C., Waje S. Technology solutions to meet diesel particulate emission legislation for Euro IV and V in Asia. International conference on emission control technologies: To improve ambient air quality path forward for India. 2009. pp. 395—416.

37. Stinette J. D. Establishing total airflow requirements for underground metal/nonmetal mines based on the diesel equipment fleet. MASc thesis, Queen’s University, Kingston, Ontario, Canada. 2013. 251 p.

38. Haney R. A. Ventilation requirements for modern diesel engines. Proceedings of 14th North American Mine Ventilation Symposium, USA. 2012. pp. 249—256.

39. Bugarski A. D., Hummer J. A. Contribution of various types and categories of diesel-powered vehicles to aerosols in an underground mine. Journal of occupational and environmental hygiene. 2020, vol. 17, iss. 4, pp. 121—134. DOI: 10.1080/15459624.2020.1718157.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.