Acid leaching of heavy nonferrous metals from gold-bearing cathode deposit

The cathode deposit after gold-bearing ore processing using the carbon–adsorption technology contains a large amount of heavy base metal impurities which should be removed before the subsequent smelting and affinage operations. One of the methods for refining the cathode deposit is hydrochloric acid leaching of impurities. The physicochemical process model is developed in Selector software to identify the potential for acid leaching of impurities from the cathode deposit, to select reagents and to optimize leaching. The model reveals that the use of hydrochloric acid solutions at concentration of 200 kg/m3 or higher allows base metals to be transferred to solution as follows: copper—85.6%, lead—98.4% and zinc—99.0%. The chemical composition of leach solutions and residues is also determined. The experimental tests of hydrochloric acid leaching of impurities from the cathode deposit have proven validity of the physicochemical model. Experimental extraction values are: copper—69.06%, lead—93.9%, zinc—79.5% and iron—47%. After hydrochloric acid leaching, smelting of the cathode deposit with fluxes in induction furnaces makes it possible to obtain alloyed gold with 23.5% higher weight content of precious metals at the decreased content of copper and lead by 16.5% and 6.6%, respectively. To determine the chemical composition of the cathode deposit and leaching products, the methods of X-ray spectral microanalysis and X-ray fluorescence spectrometry is used.

Keywords: nonferrous metallurgy, cathode deposit, physicochemical modeling, leaching, impurities, hydrochloric acid, precious metals.
For citation:

Zhmurova V. V., Abdusalomov A. G. Acid leaching of heavy nonferrous metals from gold-bearing cathode deposit. MIAB. Mining Inf. Anal. Bull. 2021;(3-1):330—337. [In Russ]. DOI: 10.25018/0236_1493_2021_31_0_330.

Acknowledgements:
Issue number: 3
Year: 2021
Page number: 330-337
ISBN: 0236-1493
UDK: 66.08, 622.7
DOI: 10.25018/0236_1493_2021_31_0_330
Article receipt date: 15.10.2020
Date of review receipt: 10.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.02.2021
About authors:

Zhmurova V. V.1, Cand. Sci. (Eng.), Associate Professor of the Department of Metallurgy of Non-Ferrous Metals;
Abdusalomov A. G.1, Master’s Student of Group MCM-18-1;
1 Irkutsk National Technical Research University, v_pichugina@list.ru, Irkutsk, Russia.

 

For contacts:
Bibliography:

1. Maslenitskii I. N., Chugaev V. F., Borbat V. F. Metallurgiya blagorodnykh metallov (Metallurgy of Precious Metals), Moscow: Metallurgiya, 1987, 432 p.

2. Ilyashevich V. D., Mamonov S. N., Efimov V. N., Vostrikov V. A., Glukhov V. I., Gerasimova L. K. RF Patent No. 200137630/02, 10.04.2006.

3. Komogortsev B. V., Varenichev A. A. Problems of processing poor and refractory goldbearing ores. MIAB. Mining Inf. Anal. Bull. 2016, No. 2, рр. 204–218.

4. Mineev G. G., Panchenko A. F. Rastvoriteli zolota i serebra v gidrometallurgii [Solvents of Gold and Silver in Hydrometallurgy]. Moscow: Metallurgiya, 1994, 241 p.

5. Krishal M. M., Yasnikov I. S., Polunin V. I. Skaniruyushchaya elektronnaya mikroskopiya i rentgenospektralnyi mikroanaliz v primerakh prakticheskogo primeneniya [Scanning Electron Microscopy and X-Ray Spectral Microanalysis in Practical Examples], Moscow: Teknnosfera, 2009, 208 p.

6. Revenko A. G. (Ed.). Rentgenospektralnyi elektronno-zondovyi mikroanaliz prirodnykh obektov [X-ray Spectral Electron Probe Microanalysis of Natural Objects]. Novosibirsk: Nauka, 2000. 219 p.

7. Nabiulin R. N., Bogorodsky A. V., Balikov S. V., Emelyanov Yu.E. Atmospheric oxidation of gold-copper flotation concentrate. Journal of the Siberian Federal University. Series: Chemistry, 2017, Vol. 10, Issue 1, рр. 139–147. https://doi.org/10.17516/1998-283600138.

8. Korotkova E. I. Рlanirovanie i organizatsiya eksperimenta [Experiment Planning and Arrangement: A Tutorial], Tomsk: TPU, 2010, 122 p.

9. Adler Yu.P., Markova E. V., Granovskii Yu.A. Planirovanie eksperimenta pri poiske optimalnykh uslovii [Conditions Optimization Experiment Planning], Moscow: Nauka, 1971, 284 p.

10. Karpov I. K. Computer-aided mathematical modeling with regard to kinetics and dynamics of physical and chemical processes Groundwater and Evolution: All-Union Conference Proceedings, 1985, No. 2, pp. 293−296. [In Russ].

11. Grichuk D. V. Termodinamicheskie modeli submarinnykh gidrotermalnykh sistem [Thermodynamic Models of Submarine Hydrothermal Systems], Moscow: Nauchnyi mir, 2000, 299 p.

12. Gibbs J. W. The Scientific Papers of J. Willard Gibbs: Vol. I. Thermodynamics, Elementary Principles in Statistical Mechanics and Vector Analysis, American Journal of Physics, 1962, Vol. 30. P. 313. Available at: https://doi.org/10.1119/1.1942006

13. Vladimirov L. P. Termodinamicheskie raschety ravnovesiya metallurgicheskikh reaktsii [Thermodynamic Calculations of the Equilibrium of Metallurgical Reactions]. Moscow: Metallurgy, 1970, 528 p.

14. Kulik D. A., Wagner T., Dmytrieva S. V., Kosakowski G., Hingerl F. F., Chudnenko K. V., Berner U. R. GEM-Selector geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Computational Geosciences, 2013, Vol. 17, рр. 1–24.

15. Filippov S. I., Arsentev P. P., Yakovlev V. V., Krasheninnikov M. G. Fizikokhimicheskie metody issledovaniya metallurgicheskikh protsessov [Physicochemical Methods for Studying Metallurgical Processes]. Moscow: Metallurgy, 1968, 511 p.

16. Birich A., Stopic S., Friedrich B. Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Scientific Reports. 2019. Vol. 9. Available at: https://www.nature.com/articles/s41598-019-43383-4 (11.05.2020). https://doi.org/10.1038/ s41598-019-43383-4

17. Canda L., Heput T., Ardelean E. Methods for recovering precious metals from industrial waste. IOP Conference Series: Materials Science and Engineering, 2016, Vol. 106, рр. 12−20.

18. Yunji Ding, Shengen Zhang, Bo Liu, Huandong Zheng, Chein-chi Chang, Ekberg Ch. Recovery of precious metals from electronic waste and spent catalysts: A review. Resources, Conservation and Recycling. 2019. Vol. 141. P. 284–298. https://doi.org/10.1016/j. resconrec.2018.10.041

19. Kyle J. H., Breuer P. L., Bunney K. G., Pleysier R. Review of trace toxic elements (Pb, Cd, Hg, As, Sb, Bi, Se, Te) and their deportment in gold processing. Deportment in gold ore processing by cyanidation, Hydrometallurgy, 2012, Vol. 111–112, рр. 10−21.

20. Dizer O. A., Rogozhnikov D. A., Naboichenko S. S. Hydrochemical investigation of dissolving sulfide gold-bearing raw material of Uderey sediment. Materials Science Forum. 2019. Vol. 946. P. 535–540. Available at: https://www.scientific.net/MSF.946.535 (17.11.2019). https://doi.org/10.4028/www.scientific.net/MSF.946.535

21. Syed S. Recovery of gold from secondary sources: A review, Hydrometallurgy, 2012, Vol. 115–116, рр. 30−51.

22. Tremolada J., Dzioba R, Bernardo-Sanchez A., Menendez-Agnado J. M. The pregrobbing of gold and silver by clays during cyanidation under agitation and heap leaching conditions. International Journal of Mineral Processing, 2010, Vol. 94, рр. 67−71.

23. Morachevskii A. G., Sladkov I. B. Termodinamicheskie raschety v metallurgii [Thermodynamic Calculations in Metallurgy]. Moscow: Metallurgiya, 1993, 303 p.

24. Karpov I. K. Fiziko-khimicheskoe modelirovanie na EVM v geokhimii [ComputerAided Physicochemical Modeling in Geochemistry], Novosibirsk: Nauka, 1981, 247 p.

25. Bulidorova G. V., Galyametdinov Yu.G., Yaroshevskaya Kh.M., Barabanov V. P. Osnovy khimicheskoi termodinamiki [Fundamentals of Chemical Thermodynamics]. Kazan: KazanGTU, 2011, 516 p.

26. Nemchinova N. V., Bel’skii S. S., Aksenov A.V, Vasilev A. A. Using the method of minimizing free energy for studying metallurgical processes. Vestnik IrkutskGTU. 2014, no. 3 (86), pp .151−158.

27. Zefirova A. P. Termodinamicheskie svoistva neorganicheskikh veshchestv [Thermodynamic Properties of Inorganic Substances]. Moscow: Atomizdat, 1965, 460 p.

28. Zhmurova V. V. Development of acid leaching technology for heavy nonferrous metals from gold-bearing cathode deposit, Candidate of Engineering Sciences Dissertation: 05.16.02. Irkutsk, 2019. 146 p.

29. Balikov S. V. Pyrometallurgical technology for the processing of gold concentrates. Transactions of the Scientific Research Institute of Precious and Rare Metals and Diamonds (IRGIREDMET), Irkutsk, 2006, pp. 1604–1607.

30. Karpukhin A. I. Kislotno-solevoi affinazh zolota i serebra [Acid-Salt Refining of Gold and Silver]. Irkutsk: Irgiredmet, 2003, 192 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.